

三菱电机公司对因与本手册有关的产品的安装、使用和编程所引起的任何损害不负任何责任。

本手册中列出的示例和示图只是帮助客户理解手册内容而不保证操作。 三菱电机公司不对这些示例的实际应用承担责任。

因为实际应用极为多种多样,用户必须根据每种具体用途灵活应用。

硬件/编程手册

FX2N-10GM 和 FX2N-20GM

前言

- 本手册包括文字,图表和说明,它们可引导读者对 FX2N-10GM 和 FX2N-20GM 单元的通讯设备进行正确的安装和操作。编程指南请参见E-20TP操作手册和FX-PCS-KIT-GM-EE 软件手册。
- 在试图安装和使用 FX2N-10GM 和 FX2N-20GM 单元的通讯设备前,应阅读并理解本 手册中的内容。
- 如果对 FX2N-10GM和 FX2N-20GM 单元通讯设备的任一阶段的安装有疑问,可向专业的电气工程师咨询,该工程师应受过安装地当地或国家标准的训练,并具有相应的资格。
- 如果对 FX2N-10GM 和 FX2N-20GM 单元通讯设备的操作和使用有疑问,可向最近的 三菱电气经销商咨询。
- 本手册作了更改,恕不另行通知。

FX2N-10GM 和 FX2N-20GM

硬件/编程手册

手册号 : JY992D77801

手册版本 : B

日期 : 2000年二月

AMITSUBISHI

传真反馈

三菱一直致力于发展和推进工业自动化的前沿,因而它有着世界知名的声望。用户们往往忽视资料中对细节的注意和重视。但为了继续进行产品的完善,我们欢迎来自三菱用户的任何评论。本页是为读者您设计的,请填写您的评论并传真给我们。我们期待着收到您的反馈。

传真号: 三菱电机				
三愛电机 美国 澳大利亚 德国	(01) 847-478-2283 (02) 638-7072 (0 21 02) 486-1 12	您的公司		
德国 南非 英国	(0 27 02) 486-1 12 (0 27) 11 444-0223 (01707) 278-695			
请在您选中	中打钩			
您是否使用]您手中时的状况怎样?]文件夹来存放此手册? 手册的陈述如何?	□好 □是 □简洁	□轻微损害 □否 □不友好	□不能使用
其中的说明	月是否可理解? 月是最难理解的?	□是	□不算太差	
	、清楚的图表? 是哪一副?	□是	□否	
	=册的布局如何? 望其中的某处有所改进,	□好 是哪一处?		□毫无用处
通过索引和	1/或目录,您能轻易地找	找到您所需要的信	息吗?如可能,让	青写上您的经历:
您对三菱的	的手册是否存在通用的评			
谢谢占用您 的。	感的时间来填写此问卷。3		还是手册对您来	

★MITSUBISHI

有关用户安全和保护 FX2N-10GM 和 FX2N-20GM 单元不受损害的原则

本手册为使用 FX2N-10GM 和 FX2N-20GM 单元提供信息。它可被受过训练且合格的人员所使用。 此位或此类人员的定义如下:

- a) 使用与此手册相关的产品负责规划,设计和构造自动化设备的工程师,必须是具有竞争精神,并受过与其职位相称的本地或国家标准培训的合格人才。他们必须完全清楚有关自动化设备的所有安全事项。
- b)任何参与项目的工程师必须具有竞争精神,接受并通过过过完成此工作所需要的本地或 国家标准的培训。他们也必须受过使用和维修已完成产品的培训。这包括对所述产品的 所有相关资料要十分熟悉。所有的维修须根据已建立的安全规范来进行。
- c) 所有的已完成产品操作人员必须经过培训,以使他们根据与已建立的安全规范相一致的安全且协调的方式来使用此产品。他们也必须熟悉与已完成产品的实际操作相关的资料。

注意:注意:术语'已完成产品'指第三方采用与此手册相关的产品构造的设备。

在本手册中多处采用特定的符号来突出某些信息点,它们是用来确保用户的安全和设备的完整性。当遇到以下符号中的任一种时,必须理解它们的含义。现在,每一个用到的符号伴随着一个简短的意义描述在下面列出:

硬件警告

1) 表示所标识的危险将导致身体或财产损害。

2) 表示所标识的危险可能导致身体或财产损害。

3) 表示有着进一步兴趣或需要进一步解释的地方。

软件警告

4) 表示当使用软件的此部分时必须特别小心。

5)表示使用相关软件部分的用户需要注意的一个特别点。

6)表示有着进一步兴趣或需要进一步解释的地方。

- 在任何情况下,三菱电机不对安装或使用此设备中造成的任何实质性损害负有责任。
- 本手册中的所有例子和图表只是用来辅助理解文字描述,而不是用来保证其运行。 三菱电机将对基于这些图例的产品实际使用不负任何责任。
- 由于此设备在各种可能应用中的多样性,您必须使它与特定的应用相适应,来达到自己的意图。

1	. 介绍	1 - 1
	1.1 步骤介绍和参考手册	. 1-1
	1.2 产品概况	.1-2
	1.3 轮廓尺寸	.1-3
	1.4 产品组成	
	1.4.2 安装方法	
	1.4.3 手动 / 自动选择开关	
	1.4.4 连接 PLC 主单元	
	1.4.5 系统配置和 I/0 分配	. 1-1
	1.4.6 状态指示	. 1 - 0 .1 11
	1.4.7 1/0连接器	1 10
	1.5 系统配置	1 16
	1.6 针脚分配和每一电缆的连接图	1 10
	1.7 端子板	1 24
	1.7.1 外部尺寸	1 - 24
	1.7.2 端子板的 I/O 规格(直流输入类型)	1-24
	1.7.3 端子板的输出规格	1-25
	1.7.4 端子板的内部连接图	1-25
	1.7.5 端子板布局	1-26
2	. 规格	. 2-1
	2.1 电源规格	. 2-1
	2.2主要规格	
	2.3 性能规格	.2-1
	2.4 输入规格	.2-4
	2.1 输出规格	.2-6
_		
3	. 连线	
	3.1 电源连线	
	3.21/0连线	
	3.2.1 输入连线样例	
	3.2.2 输出连线样例	
	3.2.3 操作输入连线	3-10
	3.2.4 驱动系统 / 机械系统 I/O 连线	3-11
	3.2.5 手动脉冲发生器连线	3-12
	3.2.6 绝对位置(ABS)检测连线	3-13
	3.2.71/0连线样例	3-14
4.	. 参数	4-1
	4.1 主要参数注意事项	4-1
	4.2 参数表	4-3
	4.3 定位参数	4-8
	4.3.1 定位参数	4-8
	4.3.21/0控制参数	4-23
	4.3.3系统参数	
	······································	

程序格式	5 - 1
5.1 定位程序	5 - 1
5.2 子任务程序	5-3
5.3 指令消早和执行的间	5 - 5
5.3.1 指令清里	5 5
5.3.2 指令执行时间和启动时间	5 7
5.4 位置控制指令的通用规则	5-9
5.4.1 m代码指令格式	5-9
5.4.2 连续路径(FX _{ou} -20GM)	5_10
5.4.3 使用连续路径的多步操作(FX _{2N} -10GM)	· 5-13
5.5 指令格式	5-16
5.6 驱动控制指令	5-19
5.6.1COO UU(DRV): 尚述正位	• 5-19
5.6.2COO U1(LIN):线性抽补正位	· 5-21
5.6.3COO U2(UW), 1COO U2(UUW):指定甲层时圆弧抽作	5-23
5.0.4COU U4(IIM). 信比的目	- 5-26
5.0.3COU U9(UN).问服归米似旦	· 5-27
5.0.0c0u 20(DRVZ).彻品凹令 5.6.7cod 20(CETD).中气重占设定	5-28
5.0.7COU 29(SEIN).电(令点仅在 5.6.9cod 30/DDVP)·由与同零	- 5-29
5.0.0cod 30(DNN). 电、回令 5.6.0cod 31(INT). 由断停止(勿較剩全距率)	- 5-29
5.0.300d 31(NN). 中断停止(心临初示距离) 5.6.10cod 71(SINT). 由断占动绘(单先速度)	5 - 30
5.6.10cod 71(OINT): 中断点动给(平步速度) 5.6.11cod 72(DINT): 中断占动给(两先速度)	5 - 32
5.6.11cod 72(DIMT): 中断無効组 (两步速度)	- 5-33
5.6.13cod 74(CNTC): 中点补偿	5-35
cod 75(RADC): 半径补偿	. 5 26
つ.り.14CO(1 /り(しANU.):水パ云は以日	. E 27
5.6.15cod 90(ABS):绝对地址, cod 91(INC):增量地址	. 5 20
5.6.16cod 92(SET):当前值变化	. 5-30
5.7 顺序控制指令中的通用项	5 - 10
5.7.1 和 PLC 操作的区别	5 - 10
5.7.2 适用设备	5 _ 11
5.7.3 位设备	5 40
5.7.4 数据长度和指令执行格式	5 - 13
5.7.5设备家引	5-43
5.8 基本顺序指令	5-44
5.9 应用指令格式	5 - 45
5.10 顺序应用指令描述	5-47
5.10.1FNC00(CJ): 余件转移	5-47
5.10.2FNC00(UJN): 余件非转移	5-47
5.10.3FNCU2(UALL):	5 - 48
5.10.4FNCU4(JMF): 7F示计姚z>	5 - 48
5.10.3FNOU3(DRET): 医凹乌线	5 - 49
5.10.01 NOOO(NFT): 1/日かり Xロ・ NOO9 (NFL): 1/日から日本	5-50
5.10.71N010(OWI)	5 - 52
5.10.0fN011(201): 区域记载	5 - 52
5 10 10FNC13(MMOV). 放大传送	5-53
5.10.11FNC14(RMOV): 缩小传送.	: 5-53
5.10.12FNC18(BCD): BCD 转换	5-54
5.10.13FNC19(BIN): BIN转换	0-00
5.10.14FNC20(ADD): 加,FNC21(SUB): 减	0-00
5.10.15FNC22(MUL): 乘	5 - 57
5.10.16FNC23(DIV): 除	5-57
	程序格式 5.1 定位程序 5.3 指令清单和执行时间 5.3.1 指令清单 5.3.2 指令执行时间和启动时间 5.4.0 置控制指令的通用规则 5.4.1 m代码指令格式 5.4.2 连续路径FX、200M). 5.4.3 使用连续路径的多步操作(FXm、10GM) 5.5 指令格式 6.6 驱动控制指令 5.6.2cod 01(LIN):线性插补定位 5.6.3cod 02(0W)、1cod 02(CW):指定中点的圆弧插补 5.6.4cod 04(TIM):稳定时间 5.6.5cod 09(OHK):伺服结束检查 5.6.6cod 28(DRV2):机器回零 5.6.7cod 29(SETR):电气零点设定 5.6.8cod 30(DRVR):电气骤点设定 5.6.8cod 30(DRVR):电气骤点设定 5.6.8cod 30(DRVR):电气骤点设定 5.6.9cod 31(INT):中断点动给(单步速度) 5.6.11cod 72(DINT):中断点动给(两步速度) 5.6.11cod 72(DINT):中断点动给(两步速度) 5.6.11cod 72(DINT):中点补偿 5.6.15cod 90(ABS):绝对地址,cod 91(INC):增量地址 5.6.15cod 90(ABS):绝对地址,cod 91(INC):增量地址 5.6.16cod 92(SET):当前值变化 5.7.1和PLC操作的区别 5.7.1和PLC操作的区别 5.7.1和PLC操作的区别 5.7.3 位设备 5.7.3 位设备 5.7.4 数据长度和指令执行格式 5.7.5 设备索引 5.7.3 位设备第3目 5.7.3 位设备第3日 5.7.3 位设备第3目 5.7.3 位设备第3日 5.7.3 位设备第3目 5.7.3 位设备第3目 5.7.3 位设备第4时转移 5.10.1FNC00(CJ)):条件转移 5.10.1FNC00(CJ)):条件转移 5.10.1FNC01(CMP):非条件跳转 5.10.1FNC01(CMP):非条件跳转 5.10.1FNC01(CMP):非条件跳转 5.10.1FNC01(CMP):证较 5.10.1FNC01(MP):非条件跳转 5.10.1FNC01(MP):证较 5.10.1FNC01(MP):证较 5.10.1FNC01(MP):证较上转 5.10.1FNC01(MP):加入特达 5.10.1FNC0

5.10.18FNC26(WAND): 逻辑和,FNC27(WOR): 逻辑或	
FNC28(WXOR): 逻辑异或5.10.19FNC29(NEG): 补数	
5.10.19FNC29(NEG):	
5.10.20FNC72(EAT): 数子介关的分词误	
5.10.22FNC90(OUT): 输出	
5.10.23FNC92(XAB),FNC93(YAB): 绝对位置检测	
6. 特殊辅助继电器和特殊数据寄存器	6 - 1
6.1 概述	6 - 1
6.2 特殊辅助寄存器表	6-3
6.3 特殊数据寄存器表	⋯6-6
7. 与可编程控制器通信	
7.1 概要	
7.2 缓冲存储器	⋯7-2
7.2.1缓冲存储器的配置	· · 7-2
7.2.2 缓冲存储器的分配	
7.3 程序举例	·· 7-6
7.3.1指定程序号	··· 7-6
7.3.2 操作命令(启动 / 停止)	
7.3.3 读当前值	7-8
7.3.4	7-9
7.3.5 读 m 代码	. 7-10
7.3.6 读载 / 区受参数 · · · · · · · · · · · · · · · · · · ·	7-12
7.4.1 表格功能概述	
7.4.2 表格方法的声明	7 13
7.4.3 表格数据的分配	7 14
7.4.4表格数据设定	
8. 操作,维护和检验	·· 8-1
8.1 开始运行前	⋯ 8-1
8.1.1 系统设计	· · 8-1
8.1.2 初期检验(电源置 OFF)	· · 8-1
8.1.3 程序检验 (打开电源并将定位装置设定为手动模式)	
8.1.4 增量 / 绝对驱动法	· · 8-1
8.1.5 电动机旋转方向	8-2
8.1.6限位开关连接	8-3
8.1.7 各信号检出时间	. 8-3
8.1.8脉冲输出波形	8-5
8.2 各种操作	8-6
8.2.1 回零	8-7
8.2.2点动操作	. o 44
8.2.3 示教	0-14
8.2.4 单步操作	0-10
8.2.5 自动操作	0-10 - 8-17
	0-17

9	示例程序	0 1
Ο.	9.1 模型系统的设置	0 1
	9.2参数设置	0 2
	9.2.1 命令脉冲频率和最大运行速度	0-2
	9.2.2.单位体系	0.2
	9.2.2 单位体系	0 2
	9.2.4 参数设定	0.5
	9.3 独立 2 轴位置控制操作(独立操作)	ყ-ე
	9.3.1 常量进给(FX ₂ N-10GM,FX ₂ N-20GM)	0.6
	9.3.2 用任复运动常量定位 (FX2N-10GM,FX2N-20GM)	0.7
	9.3.3 重复操作(FX ₂ N-10GM,FX ₂ N-20GM)	0.0
	9.3.4 运动量为变值的定位操作	9-9
	(FX2N-10GM,FX2N-20GM)	0 10
	9.3.5 中断停止(FX2N-10GM,FX2N-20GM)	0 11
	9.3.6 单步速度时的中断停止(FX2N-10GM,FX2N-20GM)	0 12
	9.3.6 双步速度时的中断停止(FX2N-10GM,FX2N-20GM)	0 12
	9.3.6 多步速度时的操作(独立操作)	0 14
	9.4 同步 2 轴位置控制操作(FX2N-20GM)	0 16
	9.4.1 用往复运动常量定位(FX2N-20GM)	0 16
	9.4.2 直线插补(FX ₂ N-20GM)	
	9.4.3 圆弧插补(真正圆形)(FX2N-20GM)	0_10
	9.4.4 中断停止(FX2N-20GM)	
	9.4.5 连续传递操作(FX2N-20GM)	0_20
	9.5 与 PLC 的组合(FX ₂ N-64MT)	
	9.5.1 定量定位(FX2N-10GM,FX2N-20GM)	0-23
	9.5.2 运动量为变值的定位(FX2N-10GM,FX2N-20GM)	0-25
	9.5.3 用表格方法定位	0_28
10	. 故障诊断	10-1
	10.1 根据 LED 的显示作故障诊断	. 10-1
	10.2 故障代码表	10-4
	10.2.1 故障确认	10-4
	10.2.2 故障复位方法	10-4
	10.2.3 故障代码表	10-5
11	. 维护	11-1
12	. 附录	· · · 12 - 1
	12.1 指令表	12-1
	12.2 参数记录	
	12.3 程序记录	
	12 4 耒格信息清单	10.6

FX2 -10GM和 FX2 -20GMN 硬件/编程手册

介绍 1.

1.1 步骤介绍和参考手册

产品购买

附件确认

·在购买此产品后, 先确定 是否所有的附件都与产品 包装在一起。

产品确认

·连上电源,通过 LED 显示 状态来确定产品正常工作。 ·使用外部单元(如E-20TP) 进行JOG+和JOG-操作,确 保输出脉冲正常。

安装和连线

·安装并对此产品进行连线。 连线结束后,通过实行 JOG(点动)操作(来自一 个连接的输入或外部设 备),可对定位单元和电动 机放大器间的连线进行检 查。

程序载入

从外部单元载入一个定位 程序,并调节此操作。

FX2N-10GM/20GM 包括如下附件。

·电源线

FX2N-100MPCB 1根缆线

FX2N-100BPCB(仅在FX2N-20GM中)

PC 连接缆线

FX2N-GM-5EC 1根缆线

LED 点亮状态 电源 LED: 亮

准备 -x LED: 亮 准备 -y LED: 亮 其它 LED: 熄灭

在 JOG+ON 状态下

指定轴的准备(准备-x或准备-y)LED是熄灭的。 FP LED 高速闪烁 (因此看起来象亮的)。

在 JOG-ON 状态下 指定轴的准备(准备 -x 或准备 -y)LED 是熄灭的。 RP LED 高速闪烁 (因此看起来象亮的)。

对于外部单元的操作,参见相应的操作手册。

对于不能同时运行的装置,设定互锁机构到位.

- ·程序的创建和指令的描述,参见本手册中的
- "第5章,程序表达方式"。
- ·对于外部单元的操作步骤,参见相应的操作手册。
- ·如果发生错误,参见本手册中的"第10章.问题解答"。

- 参考手册 -

1) E-20TP 操作手册

本手册描述用 E-20TP 进行输入, 监控和程序测试。

2) FX-PCS-KIT-GM-EE 操作手册

本手册描述用个人计算机和 FX-PCS-KIT-GM-EE 进行输入,监控和程序测试。

3) FX-PCS-VPS/WIN-E 软件手册

本手册描述用个人计算机和 FX-PCS-VPS/WIN-E 进行输入,监控和程序测试。

上述的每一个手册与相应的产品一起包装。

也可通过向你购买 FX_{2N}-10GM/20GM 的经销商索要此手册。

1.2 产品概况

定位单元 FX_{2N} -10GM 和 FX_{2N} -20GM(以后当表示它们时称为" FX_{2N} -10GM"," FX_{2N} -20GM" 或统称"定位单元")是输出脉冲序列的专用单元。

定位单元允许用户使用步进电机或伺服电机,并通过驱动单元来控制定位。

1) 控制轴数目(控制轴数目表示控制电机的个数。) 一个 FX_{2N}-10GM 能控制一根轴。一个 FX_{2N}-20GM 能控制两根轴。 (FX_{2N}-20GM 具有线性/圆弧插补功能。)

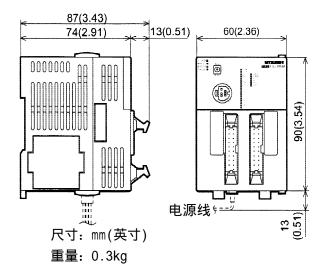
2) 定位语言

定位单元配有一种专用定位语言(cod指令)和顺序语言(基本指令和应用指令)。 FX_{2N} -10GM 用存于 PLC 主单元中的程序来进行位置控制,无须采用专用定位语言。 (这叫做表格方法。)

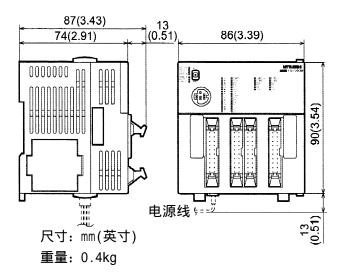
3) 手动脉冲发生器

当连上一个通用手动脉冲发生器(集电极开路型)后,手动进给有效。

4) 绝对位置(ABS)检测

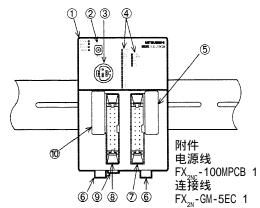

当连接上一个带有绝对位置(ABS)检测功能的伺服放大器后,每次启动时的回零点可被保存下来。

5) 连接的 PLC


当连上一个 $FX_{2N/2NC}$ 系列 PLC 时,定位数据可被读 / 写。 当连接一个 FX_{2NC} 系列 PLC 时,需要一个 FX_{2NC} -CNV-IF。 定位单元也可不需要任何 PLC 而单独运行。

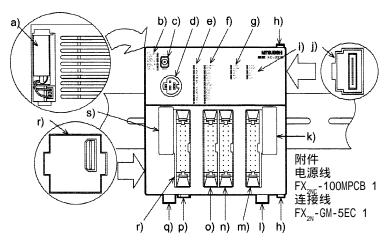
1.3 外形尺寸

FX2N-10GM


FX2N-20GM

1.4 产品组成

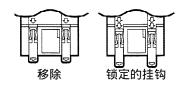
1.4.1 部件名称


FX_{2M}-10GM 每一部分的名称和描述解释如下。

- ①运行指示 LED
- ②手动/自动开关
- ③编程工具连接器
- ④ I/0 显示
- ⑤ PLC 扩展模块连接器

- ⑥用于 DIN 轨道安装的挂钩
- ⑦电机放大器的连接器: CON2
- ⑧ I/0 连接器: CON1
- ⑨电源连接器
- ⑩ PLC 连接器

FX_{2N}-20GM 每一部分的名称和描述解释如下。


- a) 电池 (参见第11部分)
- b)运行指示 LED
- c) 手动 / 自动开关
- d) 编程工具连接器
- e)通用 I/0 显示
- f)设备输入显示
- g)x 轴状态显示
- h)锁定到 FX_{2N}-20GM 的固定扩展模块
- i)y 轴状态显示
- j)FX_{2N}-20GM 扩展模块连接器

- k)PLC扩展模块连接器
- I)用于DIN轨道安装的挂钩
- m)y轴电机放大器的连接器: CON4
- n)x轴电机放大器的连接器: CON3
- o)输入设备连接器: CON2
- p)电源连接器
- q)通用 I/O 连接器: CON1
- r)存储板连接器
- s)PLC连接器

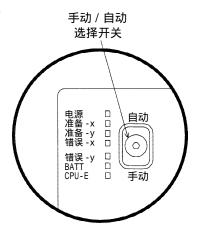
1.4.2 安装方法

定位单元可直接安装在一个 DIN 轨道 DIN46277 上 (宽度: 35mm)。 当需移除定位单元时,轻轻拉出 DIN 轨道挂钩。

当 DIN 轨道挂钩被进一步拉出时,它能被锁定在打开的状态上。

当 FX_{2NC} 系列的扩展模块与 FX_{2N} - 20GM 一起使用时,要将 其固定在 DIN 轨道上,应拉出 如右图所示箭头方向的装配 挂钩。(扩展模块不能连在

扩展模块



当直接固定 (运输时)

1.4.3 手动 / 自动选择开关

手动操作时定位此开关到"MANU",自动操作时则定位到"AUTO"。

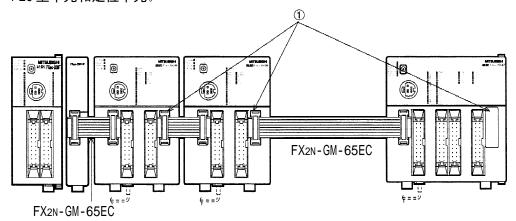
写程序或设定参数时,选择手动(MANU)模式。

在 MANU 模式下, 定位程序和子任务程序停止。

在自动操作状态下,当开关从"AUTO"切换到"MANU"时,定位单元执行当前定位操作,然后等待结束(END)指令。

• 在开始安装和连线前,确保切断所有外部电源供电。 如果电源没有被切断,可能使用户触电或部件被损坏。

警告


- 部件不能安装在具有如下环境条件的场所中:过量或导电的灰尘,腐蚀或易燃的 气体,湿气或雨水,过度热量,常规的冲击或过量的震动。
- 在安装途中,即切割、修整导线时,特别注意不要让碎片落入部件中。当安装结束时,移去保护纸带:以避免部件过热。

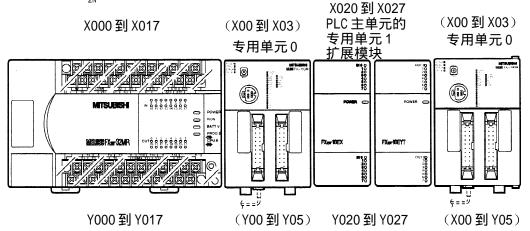
一般注意事项

- 确保安装部件和模块尽可能地远离高压线, 高压设备和电力设备。
- 连线警告
- 不要把输入信号和输出信号置于同一多芯电缆中进行传输,也不要让它们共享同一根导线。
- 不要把 I/0 信号线置于电力线附近,或使它们共享同一根导线管。低压线应可靠地与高压线隔离开或进行绝缘。
- 当 I/O 信号线具有较长的一段距离时,必须考虑电压降和噪声干扰。

1.4.4 连接PLC主单元

用 PLC 连接电缆 FX_{2N} -GM-5EC(作为附件提供)或 FX_{2N} -GM-65EC(单独出售)来连接 PLC 主单元和定位单元。

- FX_{2N}系列 PLC 最多能连接 8 个定位单元。FX_{2NC}系列 PLC 最多能连接 4 个定位单元。
- 当连接定位单元到 FX_{NC} 系列 PLC 时,需要 FX_{NC}-CNV-IF 接口。
 (当连接定位单元到 FX_{NC} 系列 PLC 时,不需要 FX_{NC}-CNV-IF 接口。)
- 在一个系统中仅能使用一条扩展电缆 FX,,,-GM-65EC (650mm)。
- 连接到如上图所示连接器上的扩展模块,扩展单元,专用模块或专用单元被看作 PLC 主单元的扩展单元。 当扩展 I/0 点到 FX_{2N} -20GM 时,把它们连接到 FX_{2N} -20GM 右部提供的扩展连接器上。 (I/0 点不能扩展到 FX_{2N} -10GM)


- 可靠地连接电缆如扩展电缆和存储卡盒到规定的连接器。
 不良接触可导致故障。
- 首先关掉电源,然后连接/断开电缆如扩展电缆。 如果在电源打开时连接/断开电缆,单元可能出现故障。

1.4.5 系统配置和 I/0 分配

FX2N-10GM

 FX_{2N} -10GM 配有电源,CPU,操作系统输入,机械系统输出和 I/O 驱动单元。它也能独立运行。

 FX_{2N} -10GM配有 4 个输入点(X0 到 X3)和 6 个输出点(Y0 到 Y5)作为通用用途,它们能连接到外部 I /0 设备。如果 I /0 点不足,把 FX_{2N} -10GM 与 $FX_{2N/2NC}$ 系列 PLC 一起使用。此时, FX_{2N} -10GM 被看作 PLC 的一种专用单元。 FX_{2N} 系列 PLC 最多能连接 8 个专用单元(包括 FX_{2N} -10GM,模拟量 I /0 和高速计数器)。 FX_{2NC} 系列 PLC 能连接最多 4 个专用单元(包括 FX_{2N} -10GM,模拟量 I /0 和高速计数器)。

() 内显示的 I/0 分配表示 FX_{2N} -10GM 中的 I/0 点。

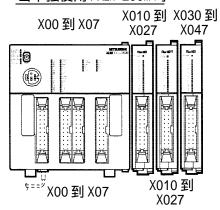
1/0 分配

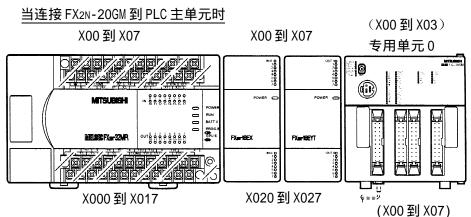
 FX_{2N} -10GM 被看作 PLC 的一种专用单元。从离 PLC 最近的算起,专用单元编号 0 到 7 被自动地分配到所连接的专用单元上。(此专用单元编号在 FROM/TO 指令中使用。) FX_{2N} -10GM 中的通用 I/0 点与 PLC 中的 I/0 点相隔离,并如同 FX_{2N} -10GM 中的 I/0 点一样控制。(一个 PLC 可占 8 个 I/0 点。)

PLC中 I/O点的分配细节参见 FX_{2N/2NC} 系列硬件手册。

FX2N-20GM

FX2N-20GM配有电源,CPU,操作系统输入,机械系统输出和 I/O 驱动单元。它也能独立运行。


FX2N-20GM 配有 8 个输入点(X00 到 X07)和 8 个输出点(Y00 到 Y07)作为通用用途,它们能连接到外部 I/0 设备上。如果 I/0 点不足,FX2N 系列 PLC 的扩展模块(不包括继电器输出型)作为 FX2N-20GM 的扩充连干其上。


FX2N-20GM可通过FX2NC-CNV-IF连接到晶体管输出型或RRIAC(三端双向可控硅开关元件)输出型FX2NC系列PLC上。(FX2N-20GM不能连接到FX2N系列PLC的扩展模块或FX2N系列的继电器输出型扩展模块上。)

FX2N-20GM 可与 FX2N/2NC 系列 PLC 一起使用。此时,FX2N-20GM 被看作 FX2N/2NCPLC 的一种专用单元。FX2N 系列 PLC 能连接最多 8 个专用单元(包括 FX2N-20GM,模拟量 I/0 和高速计数器)。FX2NC 系列 PLC 能连接最多 4 个专用单元(包括 FX2N-20GM,模拟量 I/0 和高速计数器)。

当单独使用 FX_{2N} -20GM 或连接到 PLC 主单元时,确保 FX_{2N} -20GM I /0 扩展区的同步 ON 比率为 50% 或更少。

当单独使用 FX2N-20GM 时

() 内显示的 I/O 分配表示 FX₂₀-10GM 中的 I/O 点。

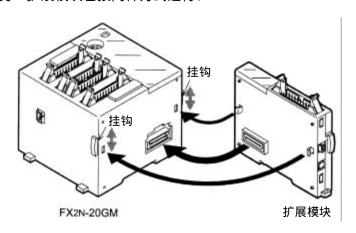
1/0 分配

当独立使用 FX 2N-20GM 时:

除了 FX_{2N} -20GM 内部的 16 个 I/0 点(8 输入点和 8 输出点)外,还可添加 48 个 I/0 点。(也就是总共可有 64 个点。)扩展输入和扩展输出独立地从离 FX_{2N} -20GM 单元最近的地方分配。

当连接 FX2N-20GM 到 PLC 的主单元:

FX2N-20GM 单元被看作 PLC 的专用单元。从离 PLC 最近的算起,专用单元编号 0 到 7 被自动地分配到所连接的专用单元上。(此专用单元编号在 FROM/TO 指令中使用。) FX2N-20GM 中的通用 I/0 点与 PLC 中的 I/0 点相隔离,并如同 FX2N-10GM 中的 I/0 点一样控制。(一个 PLC 可占 8 个 I/0 点。)

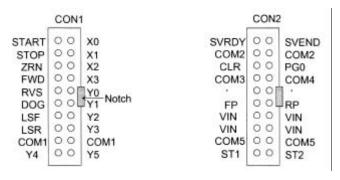

PLC中 I/O点的分配细节参见 FX2N/2NC 系列硬件手册。

1/0 扩展连接器:

FX_{2N}-20GM 能连接到 FX_{2N} 系列扩展模块(不包括继电器输出型)上,来扩展通用 I/0 点。

 $(FX_{2N}-20GM$ 也能通过 $FX_{2N}-CNV-IF$ 连接到 FX_{2N} 晶体管或 TRIAC (三端双向可控硅 开关元件)输出型的扩展模块上,来扩展通用 I/0 点。扩展点数最大为 48。同步 ON 比率应为 50% 或更小。)

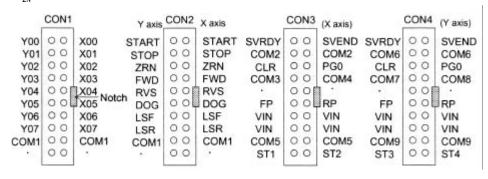
从 FX_{2N}-20GM 右侧移去扩展连接器盖板。拉起挂钩,把扩展模块上的卡爪塞进 FX_{2N}-20GM 上的装配孔中来进行连接。然后,拉下挂钩以固定扩展模块。连接一个 扩展模块和另一扩展模块也按同样方式进行。


1.4.6 状态显示

定位单元上的 LED 显示了单元的状态。

表 1.1: 状态显示

LED	FX _{2N} -10GM	FX _{2N} -20GM				
电源	当正常供电时发亮。如果即使正常供电时此 LED 也熄灭,供电电压可能不正常,或电源线路可能由于导电异物或其它物体的进入而不正常。					
准备	当 FX _{2N} -10GM 准备接收各种操作 命令时发亮。当正在进行定位 (也就是,当脉冲正在输出时) 或存在错误时熄灭。					
准备-X	_	当 FX _{2N} -20GM 的 X 轴准备接收各种操作命令时发亮。当正在进行 X 轴定位(也就是,当脉冲正在输出时)或存在错误时熄灭。				
│ │ 准备-Y │	_	当 FX _{2N} -20GM 的 Y 轴准备接收各种操作命令时发亮。当正在进行 Y 轴定位(也就是,当脉冲正在输出时)或存在错误时熄灭。				
错误	当在定位操作中存在错误时发 亮或闪烁。 用户可在外部单元上读出错误 代码,以检查错误内容。	_				
错误-X	_	当在 X 轴定位操作中存在错误时发 亮或闪烁。用户可在外部单元上读 出错误代码,以检查错误内容。				
错误-Y	_	当在 Y 轴定位操作中存在错误时发 亮或闪烁。用户可在外部单元上读 出错误代码,以检查错误内容。				
电池 (BATT)	_	如果在电池电压低时打开电源,此 LED 发亮。				
CPU-E	当发生监视计时器错误时发亮 [估计造成的原因为导电异物的侵入,非正常噪声或低电池电压(仅 在 FX _{2N} -20GM 中)。]					


1.4.7 I/O连接器 FX2N-10GM

所有具有相同名称的端子是内部连通的。(如 COM1-COM1, VIN-VIN, 等)不要连接"。"端子。

连线信息参见 FX_{2N}-10GM,FX_{2N}-20GM 硬件编程手册。

FX_{2N}-20GM

所有具有相同名称的端子是内部连通的。(如 COM1 - COM1 , VIN - VIN , 等)不要连接"•"端子。

以上的针脚分布表明了定位单元的连接器状况。

当用户自己制作一根 I/0 电缆时,电缆连接器上的"▲"被看作针脚号 20。密切注意"▲"和凹槽的位置。

• 用一根 2mm² 或以上的导线对定位单元上的接地端子实行 3 级接地。但不要用强电力系统进行公共接地。

FX系列定位控制器

连接器信号

表1.2连接器信号

FX _{2N} -10GM		FX _{2N} -20GM		缩写	자상./호표	
连接器	针脚号	连接器	针脚号	细与	功能/应用	
	1	CON2	*1 1 (Y) 11 (X)	START	自动操作开始输入 在自动模式的准备状态(当脉冲没输 出时)下,当 START 信号从 ON 变为 OFF 时,开始命令被设置且运行开始。此 信号被停止命令 mOO 或 mO2 复位	
	2		2 (Y) 12 (X)	STOP	停止输入 当停止信号从 OFF 变为 ON 时,停止命 令被设置且操作停止。STOP 信号的优 先级高于 START,FWD 和 RVS 信号。 停止操作根据参数 23 的设置(0 到 7) 不同而不同。	
	3		3 (Y) 13 (X)	ZRN	机械回零开始输入(手动) 当 ZRN 信号从 OFF 变为 ON 时,回零命 令被设置,机器开始回到零点。当回 零结束或发出停止命令时,ZRN 信号被 复位。	
CON1	4		4 (Y) 14 (X)	FWD	正向旋转输入(手动) 当 FWD 信号变为 ON 时,定位单元发出 一个最小命令单元的前向脉冲。当 FWD 信号保持 ON 状态 0.1 秒以上,定位单 元发出持续的前向脉冲。	
	5			5 (Y) 15 (X)	RVS	反向旋转输入(手动) 当 RVS 信号变为 ON 时,定位单元发出 一个最小命令单元的反向脉冲。当 FWD 信号保持 ON 状态 0.1 秒以上,定位单 元发出持续的反向脉冲。
	6		6 (Y) 16 (X)	DOG	DOG(近点信号)输入	
	7			7 (Y) 17 (X)	LSF	正向旋转行程结束
	8		8 (Y) 18 (X)	LSR	反向旋转行程结束	
	9, 19 CON2	9 (Y) 19 (X)	COM1	公共端子		
		9 (Y) 19 (X)				

FX系列定位控制器

表1.2: 连接器信号

FX _{2N} -10GM		FX _{2N} -20GM		/ 	T-64 (-) II
连接器	针脚号	连接器	针脚号	缩写	功能/应用
	11		11	X0	通用输入
	12		12	X1	通过参数,这些针脚可被分配给数字开关的输入,
	13		13	X2	m代码 OFF 命令,手动脉冲发生器,绝对位置(ABS) 检测数据,步进模式等。
	14		14	ХЗ	「恒炯致福,少近侯氏守。 当被一个参数设置的 STEP 输入打开时,就选择了
	_		15	X4	步进模式,程序的执行根据开始命令的"OFF—ON"
	_		16	X5	继续到下一行。直到当前行命令结束,步进操作
			17	Х6	│ 才无效。 │
CON1		CON1	18	X7	
CONT	10	CONT	5	Y1	
	15		1	Y2	
	16		2	Y3	通用输出
	17		3	Y4	通过参数,这些针脚可被分配到数字开关数字变
	18		4	Y5	换的输出,准备信号,m 代码,绝对位置(ABS) 检测控制信号等。
	20		6	Y6	
			7	Y7	
	_		8	Y8	
	1	CON3 CON4	1	SVRD Y	从伺服放大器接收 READY 信号(这表明操作准备 已经完成)
	2, 12	CON3	2, 12	COM2	SVRDY 和 SVEND 信号(X 轴)的公共端
	3	CON3 CON4	3	CLR	输出偏差计数器清除信号
	4	CON3	4	COM3	CLR 信号(X 轴)公共端
	6	CONO	6	FP	正向旋转脉冲输出
	7, 8, 17, 18	CON3 CON4	7, 8, 17, 18	VIN	FP 和 RP 的电源输入(5V,24V)
	9, 19	CON3	9, 19	COM5	FP和RP信号(X轴)公共端
	10	CONS	10	ST1	当连接 PG0 到 5V 电源上时的短路信号 ST1 和 ST2
CON2	11	CON3	11	SVEN D	从伺服放大器接收 INP(定位完成)信号
	13	CON4	13	PG0	接收零点信号
	14	CON3	14	COM4	PGO(X轴)公共端
	16	CON3 CON4	16	RP	反向旋转脉冲输出
	20	CON3	20	ST2	当连接 PGO 到 5V 电源上时的短路信号 ST1 和 ST2
			2, 12	COM6	SVRDY 和 SVEND 信号(Y 轴)的公共端
			4	COM7	CLR 信号(Y 轴)的公共端
	_	CON4	9	COM9	FP和RP信号(Y轴)公共端
		CON4	10	ST3	当连接 PGO 到 5V 电源上时的短路信号 ST3 和 ST4
			14	COM8	PGO 信号(Y 轴)公共端
	_		20	ST4	当连接 PGO 到 5V 电源上时的短路信号 ST3 和 ST4

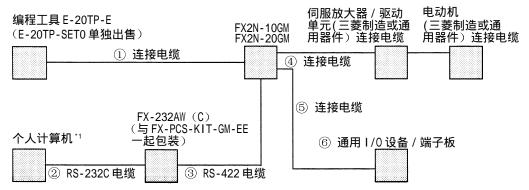
*1 在表 1.2 中, "(X)"表示 X 轴的分配, 而 "(Y)"表示 Y 轴的分配。

FX2N-10GM...... CON1: I/O 指定的连接器

CON2: 连接驱动单元的连接器

FX2N-20GM...... CON1: I/O 指定的连接器

CON2: I/O 指定的连接器


CON3: 连接驱动单元(X轴)的连接器CON4: 连接驱动单元(Y轴)的连接器

"针脚编号"列中对两个或更多针脚号的描述如COM1,COM2和VIN表明这些针脚是内部连通的。

• 当 FX2N-20GM 进行同步 2 轴操作时,步进模式命令,开始命令,停止命令和 m 代码 OFF 命令对两个轴都有效,即使以上命令只作用于 X 或 Y 轴。

1.5 系统配置

下图表明了使用定位单元的系统配置。

*1:个人计算机软件

FX-PCS-KIT-GM-EE : 适用的个人计算机 PC-AT 兼容机

适用的操作系统 MS-DOS

FX-PCS-VPS/WIN-E : 适用的操作系统Windows95.Windows 98.Windows Nt4.0

连接电缆和端子板

① 连接 E-20TP-E 的电缆

E-20TP-CABO (3m,与E-20TP-E-SETO一起包装) FX-20P-CABO (1.5m,单独出售)

② 连接个人计算机的 RS-232C 电缆

F₂-232CABO(25 针 5 针)(与 FX-PCS-KIT-GM-EE 一起包装) F₂-232CAB-2(半节距 14 针 5 针)(单独出售)

- ③ 连接个人计算机的 RS-422 电缆(与 FX-PCS-KIT-GM-EE 一起包装) FX-422CAB0
- ④ 连接伺服放大器 / 驱动单元的电缆(单独出售) 连接 MR-C E-GMC-200CAB(2m)的电缆 连接 MR-J E-GMJ-200CAB(2m)的电缆 连接 MR-J2 E-GMJ2-200CAB1A(2m)的电缆 连接 MR-H E-GMH-200CAB(2m)的电缆 连接通用驱动单元 E-GM-200CAB(2m)的电缆

(通过端子板 FX-16E-TB 传送)

⑤ 连接通用 I/O 设备 / 端子板 (单独出售) 的连接电缆

FX-16E-150CAB: 两端带有连接器的扁平电缆 (1.5m)

FX-16E-300CAB: 两端带有连接器的扁平电缆 (3.0m)

FX-16E-500CAB: 两端带有连接器的扁平电缆 (5.0m)

FX-16E-150CAB-R: 两端带有连接器的圆多芯电缆(1.5m)

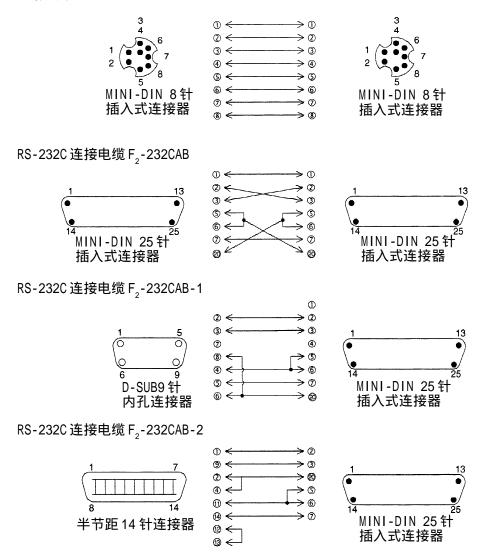
FX-16E-300CAB-R: 两端带有连接器的圆多芯电缆 (3.0m)

FX-16E-500CAB-R: 两端带有连接器的圆多芯电缆 (5.0m)

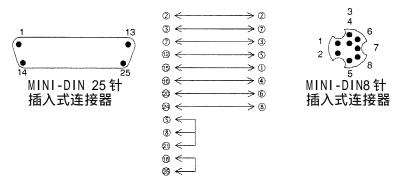
FX-16E-500CAB-S: 仅一端带有连接器的电缆(5.0m)

⑥ 端子板(单独出售)

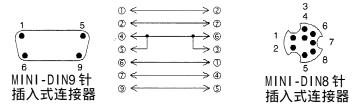
对于定位单元 / 扩展模块:

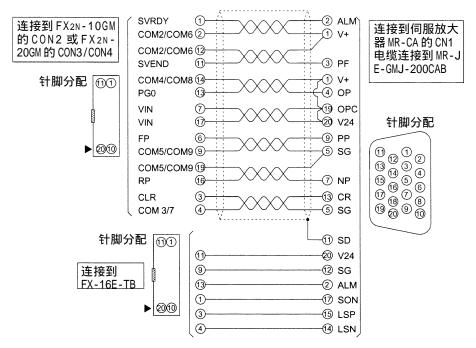

FX-16E-TP, FX-32E-TB

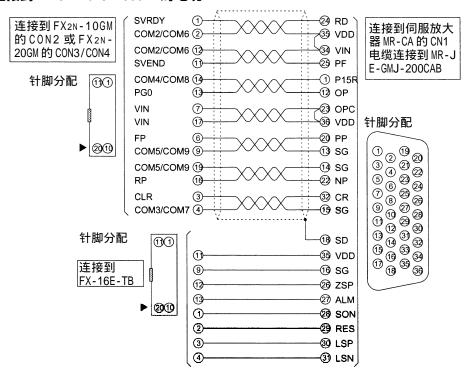
对于扩展模块 (不能连接到定位单元)


 $FX-16EY \square -TB (\square = R, S 或 T), FX-16EYT-H-TB$

1.6 每根电缆的针脚分配和和连接图

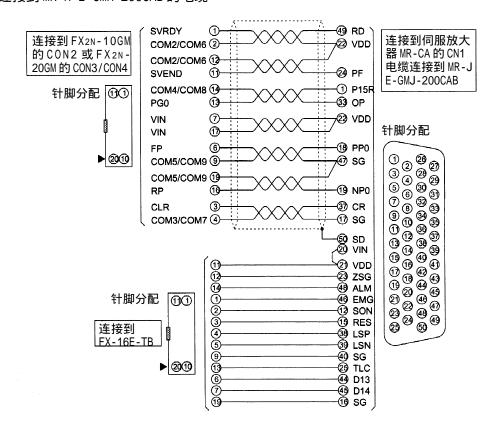

连接电缆 FX-20P-CABO


RS-422 连接电缆 FX-422CAB0


连接电缆FX-50DU-CABO, FX-50DU-CABO-1M, FX-50DU-CABO-10M, FX-50DU-CABO-20M, FX-50DU-CABO-30M, FX-50DU-CABOL

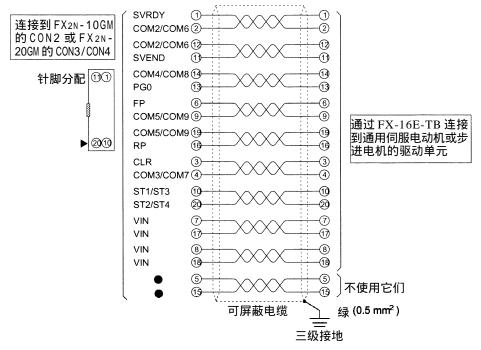
连接 MR-C E-GMC-200CAB 的电缆

连接到 MR-J E-GMJ-200CAB 的电缆

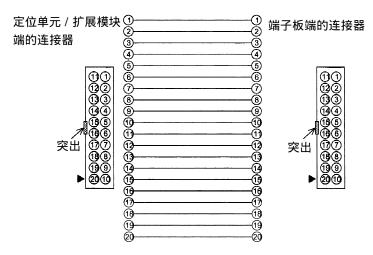


• 当从定位单元 / 扩展模块 / 端子板连接(接合)的一端看连接器时,上图表示了此时针脚的分配。

连接 MR-J2 E-GMJ2-200CAB1A 的电缆

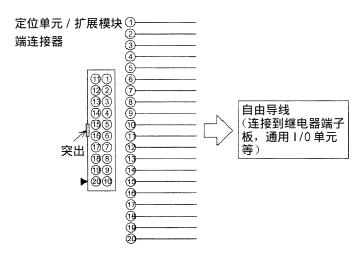


连接到 MR-H E-GMH-200CAB 的电缆



• 当从定位单元 / 扩展模块 / 端子板连接(接合)的一端看连接器时,上图表示了此时针脚的分配。

连接通用驱动单元 E-GM-200CAB 的电缆



I / 0 电缆 FX-16E-150CAB,FX-16E-300CAB,FX-16E-500CAB,FX-16E-150CAB-R,FX-16E-300CAB-R,FX-16E-500CAB-R

• 当从定位单元 / 扩展模块 / 端子板连接(接合)的一端看连接器时,上图表示了此时针脚的分配。

I/0 电缆 FX-16E-500CAB-S

• 当从定位单元 / 扩展模块 / 端子板连接(接合)的一端看连接器时,上图表示了此时针脚的分配。

I/0 电缆的制作

我们提供扁平电缆和自由导线的连接器固定器件,以使用户可以自己制作 I/0 电缆。电气导线和压接工具由用户提供。

表 1.3: I/O 电缆的制作

1/0 连扫	要器的型号和配置	适用的	电气导线和工具*1
三菱的型号	所包括的部件 (Daiichi Denshi制造)	电气导线尺寸	压接工具
 对于扁平电缆用	(Dailchi Denshi 制造)	AW000 (0 4 2)	(Daiichi Denshi 制造)
FX _x -I/0-CON(10 个 连接器)	压接连接器 FRC2-A020-30S	AWG28 (0, 1mm²), 1.27 节距, 20 芯	主体 357J-4674D 附件 357J-4664N
对于自由导线用 FX _{2c} -I/O-CON-S (5套)	外罩 HU-200S2-001 压接 HU411S	AWG22 (0.3mm ²),	357J-5538
对于自由导线用 FX _{2c} -1/0-CON-SA (5套)	外罩 HU-200S2-001 压接 HU411SA	AWG20 (0.5mm ²),	357J-13963

1 当使用自由导线时,由于外皮厚度的不均匀,用户可能不能很顺利地把它们插入护套中。我们推荐使用 UL-1061。

1.7 端子排组件

端子排组件把定位单元的 I/0 区或来自连接器的连接器型扩展模块转换为端子排组件。

有以下型号的端子排组件。

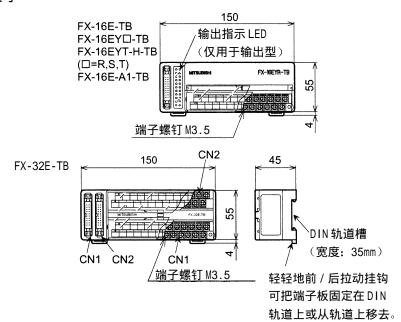
FX-16E-TB : 输入和输出均为 16 点,可与定位单元和扩展模块连接。

FX-32E-TB: 输入和输出均为 32 点,可与定位单元和扩展模块连接。

FX-16E-A1-TB : 仅用于交流(AC)输入,16点,可与扩展模块连接

(不能与定位单元连接。

FX-16EY □ -TB (□ =R, S 或 T): 仅用于输出, 16 点, 可与扩展模块连接


(不能与定位单元连接。)

FX-16EYT-H-TB : 仅用于输出, 16点, 可与扩展模块连接

(不能与定位单元连接)

用户可以使用仅为输入或仅为输出的端子排组件来把连接到FX2N-20GM上的连接器型扩展模块转换为端子排组件。记住不能把此端子排组件连接到定位单元的 I/0 区。有关端子排组件的详细信息,参见与一端子排组件一起提供的使用手册。

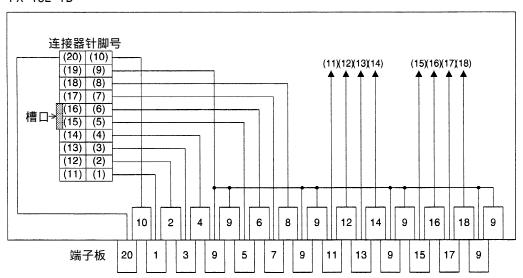
1.7.1 外部尺寸

1.7.2 端子排组件的 I/O 规范(交流(AC)输入型)

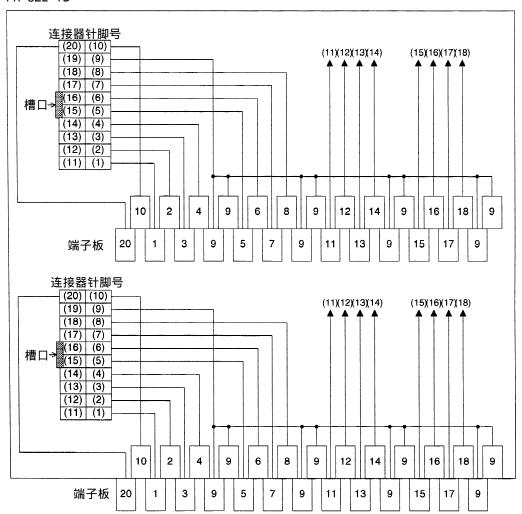
表 1.4: 端子排组件的 I/O 规范(交流输入型)

指标	FX-16E-A1-TB(AC 输入型)
输入信号电压	100 to 120V AC+10%-15%, 50/60 Hz
输入信号电流	6.2 mA / 110V AC, 60 Hz or 4.7 mA / 100V AC, 50 Hz
输入 ON 电流	3.8 mA / 80V AC
输入 OFF 电流	1.7 mA / 30V AC
响应时间	25 到 30ms(高速输入是不可能的。)
输入信号类型	电压接触
电路绝缘	光电耦合器绝缘
输入操作指示	无输入 LED (仅提供 24V 电源的 LED)
输入阻抗	大约 21K 欧/50HZ 或 18K 欧/60HZ
电流消耗	每点 3mA/24V 直流 (DC)
	

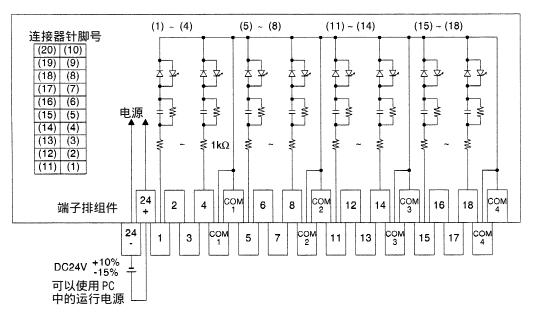
1.7.3 端子板排组件的输出规范

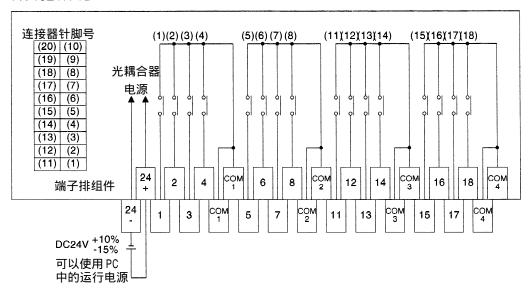

表 1.5 端子排组件的输出规范

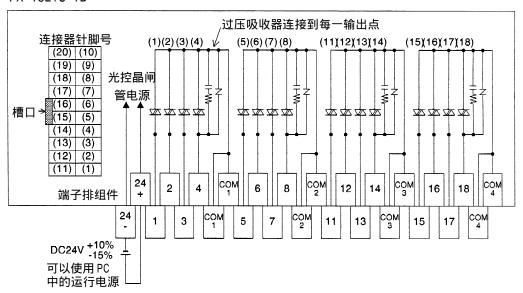
指标	<u>r</u>	FX-16EYR-TB	FX-16EYS-TB	FX-16EYT-TB	FX-16EYT-H-T
		(继电器输出)	(TRIAC 输出)	(晶体管输出)	B(晶体管输
					出)
负载	战电压	250V AC / 30V DC	85V AC 到 242V AC	5V DC 到 30V DC	5V DC到30V DC
		或更小			
电路	各绝缘	机械绝缘	光控闸流晶体管	光耦合器绝缘	光耦合器绝缘
			绝缘		
操作	F指示	当继电器线圈上电	当光控闸流晶体	当光耦合器上	当光耦合器上
		时,LED 亮。	管上电时,LED 亮。	电时,LED 亮。	电时,LED 亮。
	电阻负载	2A / 点	0.3A / 点	0.5A / 点	1A / 点
载		8A / 4点	0.8A / 4点	0.8A / 4点	3A / 4点
大负₫	电感负载	80 VA	15 VA / 100V AC	12W / 24V DC	24W / 24V DC
 			30 VA / 200V AC		
郶	坡道负载	100W	30W	1.5W / 24V DC	3W / 24V DC
闭台	自回路	-	1mA / 100V AC	0.1mA / 30V DC	0.1mA / 30V DC
泄源	帚电流		2mA / 200V AC		
最小	\负载	5VDC, 2mA (参考值)			
<u></u>	OFF-ON	约 10ms	2ms 或更短	0.2ms 或更短	0.3ms 或更短
响应时间	ON-OFF	约 10ms	12ms 或更短	1.5ms 或更短	4ms 或更短
遺					
输力	信号电流	每点 5mA / 24V DC	每点 7mA / 24V DC	每点 7mA / 24V	每点 7mA / 24V
		(电流消耗)	(电流消耗)	DC (电流消耗)	DC(电流消耗)

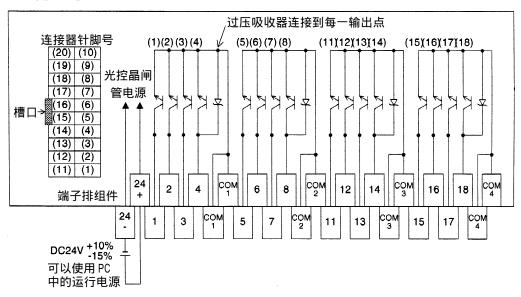

另外的主要规范与定位单元的规范相同。

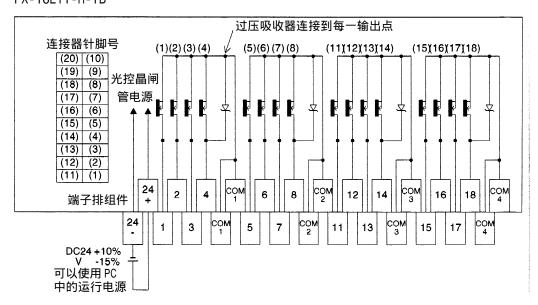
1.7.4 端子排组件的内部连线图


FX-16E-TB


FX-32E-TB

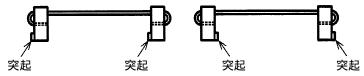

FX-16EX-A1-TB


FX-16EYR-TB


FX-16EYS-TB

FX-16EYT-TB

FX-16EYT-H-TB



连线的细节参见与每一端子排组件一起提供的使用手册,以及FX2N手册和FX2NC手册。

1.7.5 端子排组件布局

端子排组件的端子布局根据所连接的定位单元或扩展模块的连接器的不同而不同。 主要的端子布局组合见下图。在下面没有列出的场合中,参见"1.7.4端子排组件的内部连线图"来进行端子的布置。

当进行扁平电缆连接时,如下所示确保对准每一连接器突起的方位。

FX₂N-10GM 的 CON1 FX-16E-TB (用 FX-16E-000CAB 连接)

		Y05	STO	OP	FW	/D	ÇOM1	DC	G	LS	R	coi	М1	X0	1	X0	3 0	COM1	YO)1	YO	3	COM	11
	Y04	STA	ART	ZF	RN	COI	M1 R	vs	LS	F	CON	/ 11	ΧO	0	X0	2	COM	41 Y	00	ΥO	2	cor	М1	

FX2N-20GM的 CON1 FX-16E-TB (用 FX-16E-000CAB 连接)

	•	•	Y0	1	Y0	3	со	М1	Y0	5	Y0	7	со	М1	X	1	XC	13	со	М1	ΧO)5	ΧC)7	co	М1	
	•	YC	00	YO)2	СО	М1	Y0	4	Yū	6	СО	М1	XC	00	ΧQ)2	со	М1	XO	4	X)6	СО	М1		

FX₂N-20GM 的 CON2 FX-16E-TB (用 FX-16E-000CAB 连接)

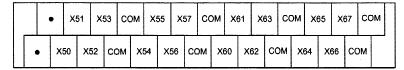
	•	•	ST	, OP	۶۷	/ VD	CO	, М1	DC	, DG	LS	/ SR	CO	/ M1	ST	(OP	۲V	۷D	co	M1	DC	c DG	LS	c SR	CO	М1	
	•	STA	y ART	ZF	/ RN	CO	/ M1	y RV	/S	LF	s S	CO	/ M1	ı	k ART	zF	ζ N	CO	K M1	R\	√S	LS	¥ ^	co	к М1		

FX2N-10GM的CON1或FX2N-20GM的CON3FX-16E-TB(用E-GM-200CAB连接)

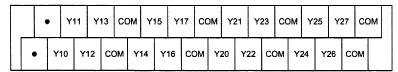
	\$1	72 0	x COM2	co	M3 C	x OM5	F	, P V	(IN	x COM) 15 CO	M2	X COM-	, CO	M5	x RF	- 1	x IN	X COM
S	κ Γ1	X SVRI	DY C	x LR	x COM	,	•	x VIN	CO	M5 S	x Vend	y PG	io C	x OM5	X		x VIN	CON	M 5

FX_{2N}-20GM的CON4 FX-16E-TB(用E-GM-200CAB连接)

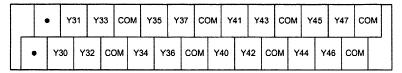
	S	/ Г4	CO	, M6	co	/ М7	y COI	м9	y FF	, VI	/ N	co	/ M9	co	, М6	co	, М8	COM	19 F	y RP	VI	/ N	y COM	19
s	у Т3	SVF	/ RDY	CL	/ .R	CO	, М9	y		y VIN	co	,	SVE	/ :ND	PO	/ 30	y COI	W9	у •	VI	/ IN	y COI	м9	

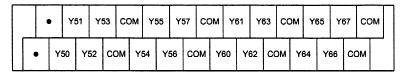

FX2NC-16EX (第1) → FX-16E-TB (用 FX-16E-000CAB 连接)

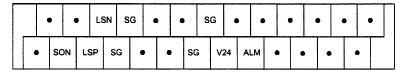
	•	,	X1	1	X1:	3 c	ОМ	X.	15	X1	7 0	СОМ	X	21	X2	23	СО	м	X25	X	27	CC	М	
	9	Х1	10	Х1	2	СОМ	x	14	X1	6	CON	۸ ×	20	x	22	COI	м	X24	×	26	co	м		


FX₂NC-16EX (第2) → FX-16E-TB (用 FX-16E-000CAB 连接)

	•	•	X3	31	X	33	со	м	X35	×	37	CC	м	χź	11	X4	13	co	М	X4	15	χ	17	CON	M	
	•	X3	30	X	32	CC	М	х3-	4 >	(36	cc	м	X4	\$ 0	X4	12	co	М	X4	4	X4	16	СО	м		


FX2NC-16EX (第3) → FX-16E-TB (用 FX-16E-000CAB 连接)


FX2NC-16EYT (第1) → FX-16E-TB (用 FX-16E-000CAB 连接)


FX2NC-16EYT (第2) → FX-16E-TB (用 FX-16E-000CAB 连接)

FX2NC-16EYT (第3) → FX-16E-TB (用 FX-16E-000CAB 连接)

MR-CA 伺服放大器的 CN1 → X-16E-TB (用 E-GMC-200CAB 连接)

MR-JA 伺服放大器的 CN1 → FX-16E-TB (用 E-GMH-200CAB 连接)

		•	RE	s	LS	ŝN	S	G	•	•	•	S	G	ZS	SP	•	,	SG		•	,	•	so	3	
	•	sc	ON	LS	ŝΡ	S	G	•		•	S	G	VE	םמ	AL	.М	sc	3	•	•	•	S	3		

MR-HA 伺服放大器的 CN1 → FX-16E-TB (用 E-GMH-200CAB 连接)

	•	•	SC	ON	LS	SP	S	3	DI3	•	•	S	G	ZS	SP.	AL	.м з	G .	•	,	•	,	SG	
	•	ΕN	ΛG	RE	s	so	3	LSN	N D	14	s	G	VE	OC	TL	С	SG		•	•	,	sc	3	_

备忘录

2. 规格

2.1 电源规格

表 2.1: 电源规格

项目	FX _{2N} -10GM	FX _{2N} -20GM
电源	24V DC - 15%, +10%	
容许电源失效时间	如果瞬时电源故障时间为 5ms 或頭	更短,运行将继续。
电力消耗	5W	10W
保险丝	125V AC 1A	

2.2 主要规格

表 2.2: 主要规格

项目	内容
环境温度	0 到 55℃ (运行)。-20 到 70 ℃ (存储)
环境湿度	35 到 85%,无冷凝(运行)35 到 90%(存储)
抗振性	符合 JIS C0040。10 到 57HZ: 0.035mm 幅度的一半,
	57 到 150HZ: 4.9m/s²加速
	X, Y, Z 的扫描次数: 10 次 (每一方向 80 分钟)
抗冲击性	符合 JIS C0041。147m/s²加速,作用时间:11ms。
	X,Y,Z方向各3次。
抗噪性	1,000Vp-p,1us。30 到 100HZ,用噪声模拟器测试。
绝缘承载电压	500V AC>1 分钟,在所有的点,端子和地之间测试
绝缘电阻	5MΩ>500V DC,在所有的点,端子和地之间测试
接地	3级(100Ω或更小)
大气条件	环境条件为无腐蚀性气体。灰尘为最少。

2.3 性能规格

表 2.3: 性能规格

项目	FX _{2N} -10GM	FX _{2N} -20GM	
控制轴数目	单轴	两轴(两轴或两根独立同步轴)	
应用 PLC	FX _{2N} 和 FX _{2N} 系列 PLC 的母线连接。所占的 I / 0 点数目为 8 点。连接 FX _{2N} 系列 PLC 时需要 FX _{2N} - CNV - IF。		
程序存储器	内置 RAM(3.8K 步)	-CNV-1F。 内置 RAM(7.8K 步) 可选存储器板: FX _{2MC} -EEPROM-16(7.8K 步) 不能使用带有时钟功能的存储器 板。	
电池	带有内置 FX _∞ -32BL 型锂电 池 大约 3 年的长寿命(1 年质 保)	带有内置 FX _{2NC} -32BL 型锂电池 大约 3 年的长寿命(1 年质保)	
定位单元	命令单位: mm, deg, inch, pls, (相对/绝对) 最大命令值+999, 999 (当间接规定时为 32 位)		

表 2.3 性能规格

项	i目	FX _{2N} -10GM	FX _{2N} -20GM	
累积地	址	-2, 147, 483, 648, 到 2, 147, 483, 647 脉冲		
速度指	令	最大 200kHz, 153, 000cm/min (200kHz 或更小)。自动梯形模式加速/减速(插补驱动为 100kHz 或更小)		
零点回	归	手动操作或自动操作。DOG 信号机械零点回归(提供 DOG 搜索功能)。通过电气启动点设置可进行自动电气零点回归。		
绝对定	位检测	采用具有 ABS 检测功能的 MR-J2 和 MR-H 型	同服电动机时,可进行绝对位置检测。	
控制输	入	操作系统: FWD (手动正转),RVS (手动反转)		
		ZRN(机械零点回归),START(自动开始),STOP,		
		手动脉冲发生器 (最大 2kHZ),单步操作输入		
		(依赖参数设定)		
		机械系统: DOG (近点信号)		
		LSF (正向旋转极限),LSR (反向旋转极限),	
		中断: 4点	nn /+ -+ \	
		伺服系统: SVRDY (伺服准备),SVEND (伺) PGO (零点信号)	服结果 <i>)</i> ,	
		一般用途: 主体有 X0 到 X3	一般用途: 主体有 X0 到 X7。使用扩展	
		BX/IJZE. THE IN TING	模块可使 X10 到 X67 为输入。(最大点	
			数: 48点)	
控制输	出	同服系统: FP(正向旋转脉冲)。RP(反向旋转脉冲),		
CLR(清除计数器)。				
		一般用途: 主体有 Y0 到 Y5	一般用途: 主体有 YO 到 Y7。使用扩展	
			模块可使 Y10 到 Y67 为输入。(最大点	
			数: 48点)	
控制方	法	编程方法:程序通过专用编程工具写入	(+40.) \ (0.+) \ (1.+ 0.4) \ (1	
		FX₂N-10GM,就可进行定位操作。	编程方法: 程序通过专用编程工具写入	
		表方法: 当 PLC 一起使用时,用 FROM/TO	FX₂N-20GM,就可进行定位操作。	
程序号		指令进行定位控制。 0x00 到 0x99(定位程序),	000 到 099(两轴同步),0x00 到 0x99	
住かち		0100 (子任务程序)	和 0y00 到 099 (网轴问步), 0x00 到 0x99 和 0y00 到 0y99 (两独立轴)。0100 (子	
		0100(1任为性所)	任务程序)	
指	定位	Cod 编号系统 (通过指令 cods 使用)。13	Cod 编号系统(通过指令 cods 使用)。	
令		种。	19 种。	
	顺序	LD, LDI, AND, ANI, OR, ORI, ANB, ORB,	SET, RST和NOP。	
	应用	29 种 FNC 指令	30 种 FNC 指令	
参数		9 种系统设置, 27 种定位设置。18 种 I/0	12 种系统设置,27 种定位设置。19 种	
		控制设置。	1/0 控制设置。	
可通过特殊数据寄存器来更改程序设置(系统设置除外)				
M cods		MOO: 程序停止 (WAIT), mO2: (定位程序结	東),m01 和 m03 到 m99 可以任意使用。	
		(AFTER 模式和 WITH 模式)		
	M100 (WAIT) 和 m102 (END) 被子任务程序使用。			

FX系列定位控制器 规格2

表 2.3: 性能规格

项目	FX _{2N} - 10GM	FX _{2N} -20GM	
软元件	輸入: X0 到 X3, X375 到 X377 输出: Y0 到 Y5, 辅助继电器: M0 到 M511 (通用), M9000 到 M9175 (特殊) 指针: P0 到 P127 数据寄存器: D0 到 D1999 (通用) (16 位) D4000 到 D6999 (文件寄存器和锁存继电器)* D9000 到 D9599 (特殊) 变址寄存器: V0 到 V7 (16 位), Z0 到 Z7 (32 位)	输入: X0 到 X67, X372 到 X377 输出: Y0 到 Y67, 辅助继电器: M0 到 M99(通用), M100 到 M511 (通用和电池备用区)*, M9000 到 M9175 (专用)*,指针: P0 到 P255, 数据寄存器: D0 到 D99(通用), D100 到 D3999(通用和 电池备用区)*(16 位), D4000 到 D6999(文 件寄存器和锁存继电器)*, D9000 到 D9599 (专用) 变址寄存器: V0 到 V7(16 位), Z0 到 Z7(32 位)	
自我诊断	"参数错误","程序错误",和"外	、部错误"可通过显示和错误码来诊断。	

电池备份区(在 FX_{2N} -10GM 中,电源中断时数据由 EEPROM 保存。) 使用的文件寄存器数目应在参数 101 中设置。

2.4 输入规格

表 2.4: 输入规格

项目		从通用设备输入	从驱动单元输入	
组1		START, STOP, ZRN, FWD, RVS, LSF, LSR	SVRDY, SVEND	
输入信 号名称	组2	DOG PGO ⁻¹		
	组3	通用输入: X00 到 X03(FX _{2N} -10GM) X00 到 X07(FX _{2N} -20GM) 中断输入: X00 到 X03(FX _{2N} -10GM)	_	
	组4	手动脉冲发生器: (FX _{2N} -10GM,FX _{2N} -20GM) 中断输入: X00 到 X07 (FX _{2N} -20GM)	_	
输出电路配置		24V	3.3kΩ Input 2	
电路绝缘		通过光耦合器	通过光耦合器	
运行指示		当输入是 ON 时,LED 点亮	当输入是 ON 时,LED 点亮	
信号电压		24V DC <u>+</u> 10% (内部电源)	5 到 24V DC <u>+</u> 10%	
输入电流		7mA/24V DC	7mA/24V DC (PGO 11.5mA/24V DC)	
		4.5mA 或更小	0.7mA 或更大 (PGO 1.5mA 或更大)	
输入 OFF 电	1流	1.5mA 或更小	0.3mA 或更小(PGO 1.5mA 或更小)	
		接点输入或 NPN 集电极开路晶体管输入		
	组 1	大约 3msec(毫秒)	大约 3msec	
响应 时间	组 2	大约 0.5msec	大约 50us(微秒)	
	组 3	大约 3msec ⁻²		
	组 4	大约 2kHz ^{·2}	_	
I/O 同时转为 ON 50%或更少(FX _{2N} -20GM)				

- * 1 在使用步进电机的情况下,短接端子 ST1 和 ST2,电阻从 3.3k Ω 改为 1k Ω 。
- *2 定位单元根据参数和程序自动地调整目标(通用输入,手动脉冲发生器输入或中断输入),并自动改变滤波器常数。(仅在 FX_{2N}-20GM 中有中断输入。) 手动脉冲发生器的最大响应频率是 2KHZ。

FX系列定位控制器 规格2

每一信号的作用计时

表 2.5 每一信号的作用计时

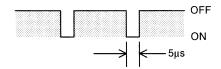
<i>t</i> △	手动模式		自动模式	
输入信号	电动机停止	电动机运行	电动机停止	电动机运行
SVRDY	驱动前	持续监控	驱动前	持续监控
SVEND	驱动后		驱动后	
PG0	_	在近点 DOG 触发后	_	在近点 DOG 触发 后
DOG	零点回归驱动前	零点回归驱动中	零点回归驱动前	零点回归驱动中
START	_		准备状态中	_
STOP	持续监控			
ZRN	持续监控	_	在 END 步后的待	_
			机中	
RWD, RVS	持续监控		在 END 步后的待机中	
(JOG+, JOG-)				
LSF, LSR	驱动前	持续监控	驱动前	持续监控
X00 到 X07	当手动脉冲发生器正在运行时		在 END 步后的待	在 INT, SINT,
			机期间,当手动	DINT 指令的执
			脉冲发生器正在	行过程中
			运行时。	
通用输入	_		当相应的指令正在执行时	
通过参数设定	_		持续监控	
的输入				

用于命令输入的专用辅助继电器在 AUTO 模式下也是被持续监控的。

FX系列定位控制器 规格2

2.5 输出规格

表 2.6 输出规格


项目	通用输出	驱动输出
信号名称	Y00 到 Y07	FP, RP, CLR
输出电路配置	COM 1 輸出	5V to 24V COM1 输出 负载
电路绝缘	通过光耦合器	
运行指示	输出是 ON 时,LED 亮	
外部电源	5到 24V DC <u>+</u> 10%	
负载电流	50mA 或更小	20mA 或更小
开路漏电流	0.1mA/24V DC 或更小	
输出 ON 电压	最大 0.5V(CLR 最大 1.5V)	
响应时间	对于 OFF—ON 和 ON—OFF 来	脉冲输出 FP RP 最大 200kHz。
	说,最大都为 0.2ms	CLR 信号的脉冲输出宽度:
	约 20msec。	
I/O 同时转为 ON 的比率	50%或更小(FX₂N-20GM)	

脉冲输出波形

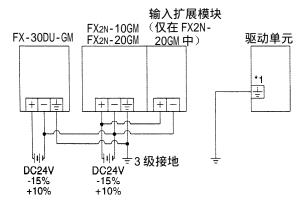
以下形式的脉冲波形输出到驱动单元。

用户可以不用参数来设置脉冲输出波形。脉冲输出波形根据实际的频率自动变换。

1) 在插补驱动指令的情况下(FX2N-20GM) 当发出一个同步两轴驱动指令(cod 01/02/03/31)时,运行频率为1HZ到100KHZ 情况下得到以下波形。

2) 在其它驱动指令下

- 当 FX2N-20GM 的运行频率为 200 到 101kHz 时, ON 周期被固定为 2.5us。因此,在 200kHz 时, ON 周期变得与 OFF 周期相等。
- 当 FX2N-20GM 的运行频率为 100kHz 到 1Hz 时,ON/OFF 比率为 50%/50%。
- 当 FX2N-10GM 的运行频率为 200kHz 到 1Hz 时, ON/OFF 比率为 50%/50%。


3. 连线

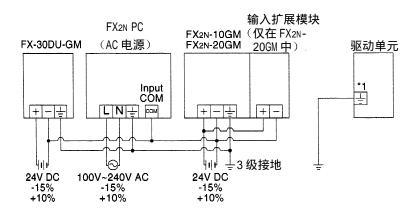
本部分描述了定位单元相关的连线。

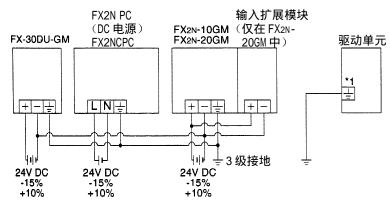
完成连线后,推荐在写程序前通过 JOG (点动)操作来检查连线。(此时,设定定位单元到 MANU 模式。JOG 速度由参数 5 的设置来决定。)(参见 4.3.1 节)

3.1 电源连线

当单独使用定位单元时

*1 每一驱动单元中的名字是不同的,如? ,FG,PE


- 在定位单元的?处和驱动单元的?处进行公共接地。
- 当从另一电源处向 FX-30DU-GM 输送电力时,在 FX-30DU-GM 的?处和定位单元的?处,进行公共接地。并连接电源上的"24-"。



确保在开始安装和连线前切断所有的外部电源供应。如果电源没有被切断,安装人员可能触电,设备可能受到损坏。

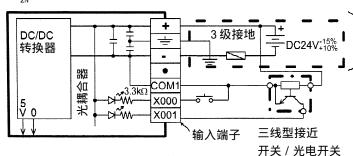
- 连接 FX_{2N}-10GM/20GM 的电源线到本手册提到的专用连接器上。 如果 AC 电源连接到 DC I/0 端子或 DC 电力端子上,PLC 可能被烧坏。
- 不要把外部单元电缆连接到 FX_{2N}-10GM/20GM 的备用端子•上。 如此连线可能损坏设备。
- 在定位单元的接地端子处用 2mm² 或更粗的电气导线进行 3 级接地。但不要用 强电力系统进行公共接地。
- 不要在带电时触摸任何端子。 如果在带电时触摸端子,可能遭到电击,设备也有可能受到损害。
- 首先关掉电源,然后开始清洁或紧固端子。 如果在带电时进行清洁或紧固操作,可能遭到电击。
- 正确地连接 FX_{2N}-10GM 中存储器备份用的电池。不要对此电池进行充电,分解,加热,短路操作,或把它投入火中。以上的操作可能造成爆炸或着火。

当连接定位单元到 PLC 时

^{*}1 每一驱动单元中的名字是不同的,如 ☐ FG,PE

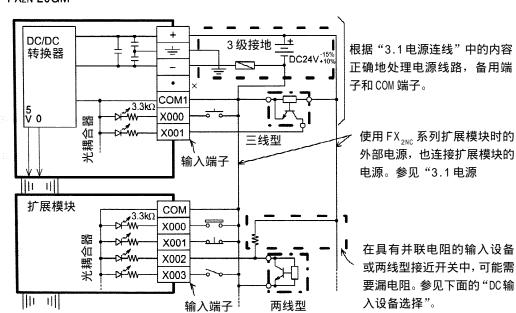
- 在定位单元的 Ѿ 处和驱动单元的 Ѿ 处进行公共接地。
- 当从另一电源处向每一 PLC 和 FX-30DU-GM 单独供电时,在 PLC 的 Ѿ 处进行公共接地,在 FX-30DU-GM 和定位单元的 Ѿ 处进行公共接地。 Ѿ 并连接每一电源上的 "24-"。

同时,连接 AC型 PLC 的输入公共端子,或连接 DC型 PLC 上的"24-"。


● 确保在开始安装和连线前切断所有的外部电源供应。 如果电源没有被切断,安装人员可能触电,设备可能受到损坏。

- 当使用可编程控制器时,参见可编程控制器的硬件手册并进行正确地连线。
- 如果FX_№-10GM的24V DC不是由可编程控制器提供的,参见前页的"当FX_{2N}-10GM 独立运行时"。
- FX-10GM 后连接的扩展模块数参见第1.4.5 节。
- 不要在带电时触摸任何端子。 如果在带电时触摸端子,可能遭到电击,设备也有可能受到损害。
- 首先关掉电源,然后开始清洁或紧固端子。如果在带电时进行清洁或紧固操作,可能遭到电击。

3.2 I/O的连接


3.2.1 输入连线的例子

FX_{2N}-10GM

根据"3.1电源连线"中的内容正确地处理电源线路,备用端子和COM端子。

FX₂N-20GM

● 输入电路

当输入端子和COM端子与无电压触点或NPN集电极开路晶体管相连时,输入被打开。两个或更多的输入COM端子在PLC内部连接。

- 运行指示
- 电路绝缘

输入的主电路和次电路由光耦合器绝缘,在次电路处提供了一个C-R滤波器,用来防止由于输入触点振颤或输入线噪声造成的故障。

● 输入灵敏度

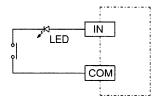
定位单元的输入电流是 24V DC,7mA。但为了更可靠地打开定位单元,输入电流应大于等于4.5mA。为了更可靠地关闭定位单元,输入电流应小于等于1.5mA。因此,如果在输入触点(用来阻碍完全 ON)处有串联二极管或电阻,或在输入触点(用来阻碍完全 OFF)处有并联电阻或漏电流,应慎重选择输入设备。

● DC 输入设备的选择

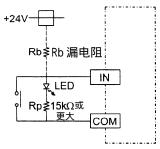
定位单元的输入电流是 24V DC, 7mA。选择适合于此微弱电流的小型输入设备。

- 在PLC外安装安全电路,这样,即使外部电源发生异常或PLC出现故障,整个系统也能适当地运行。如果安全电路安装在PLC内部,故障或错误的输出可能引起事故。
- 1) 确保在PLC外建立紧急停止电路,保护电路,用于正向和反向旋转一类反向操作的互锁电路,用于保护机器不因超上/下极限而损坏的互锁电路等。
- 2)当定位单元中的CPU由自我诊断电路检测到异常,如监视计时器错误等,所有的输出关闭。当在 I/O 控制区中发生了 PLC 的 CPU 检测不到的异常时,输出控制可能失效。
 - 设计外部电路和结构,以便整个系统在上述情况下能适当地工作。
- 3) 当在输出单元的继电器,晶体管,三端双向可控硅开关元件(TRIAC)等中发生故障时,输出可能保持 ON 或 OFF 对于可能造成严重事故的输出信号,设计外部电路和结构,以便整个系统能适当地工作。
- 在开始安装和连线前,确保切断所有相的外部电源。如果电源没有被切断,安装人员可能触电,单元也可能发生故障。
- GM 单元的所有通用输入被作为漏型输入来配置。
- 不要在带电时触摸任何端子。如果在带电时触摸端子,可能遭到电击,设备也有可能受到损害。
- 首先关掉电源,然后开始清洁或紧固端子。
 如果在带电时进行清洁或紧固操作,可能遭到电击。

选择 DC 输入设备


例子:以下产品由OMRON(欧姆龙)制造。

微开关: Z, V, D2RV 接近开关: TL, E2M 操作开关: A3P 光电开关: E3S, E3N

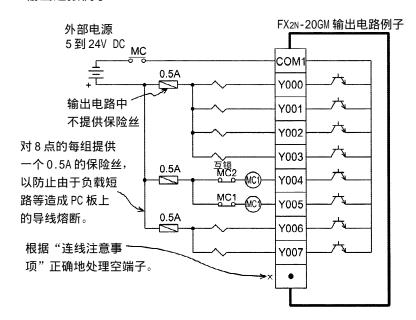

当使用用于大电流的开关时,可能发生不良接触。

带有串联二极管的输入设备

确保串联二极管的电压降为 4V 左右或更小。因此,在行程开关连有串联 LED 的的情况下,两个或更少的 LED 能被串行连接。

带有并联电阻的输入设备或两线接近开关。

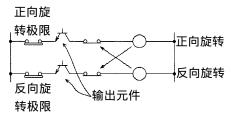
确保并联电阻 Rp 是 15k Ω 或更大。


当 Rp 小于 15k Ω 时,连接一个漏电阻 Rb,满足[24+]和[IN]端子间的如下公式。

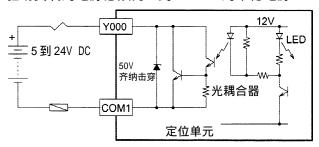
$$Rb \le \frac{4Rp}{15 - Rp}(k\Omega)$$

确保当两线接近开关被置为 OFF 时,漏电流 II 小于等于 1.5mA。 当 I 超过 1.5mA 时,连接一个漏电阻 Rb,同样满足如下公式。

$$Rb \le \frac{6Rp}{l\ell - 1.5}(k\Omega)$$


3.2.2 输出连接例子

● 在定位单元中,用 COM1 作为输入和输出公共端


● 对于成对的输入,如正向 / 反向旋转触点,在同时置为 ON 时可能产生危险。 所以在定位单元内部程序互锁的基础上,还应提供外部互锁,来保证它们不 能同时被置为 ON。

- 在开始安装和连线前,确保切断所有相的外部电源。 如果电源没有被切断,安装人员可能触电,单元也可能产生故障。
- 不要在带电时触摸任何端子。 如果在带电时触摸端子,可能遭到电击,设备也有可能受到损害。
- 首先关掉电源,然后开始清洁或紧固端子。 如果在带电时进行清洁或紧固操作,可能遭到电击。

● 输出端子:

定位单元的输出端子位于一个 16 点的连接器中,该连接器带有输入和输出。 驱动负载的电源必须为 5 到 30V DC 的平稳电源。

● 电路绝缘:

定位单元的内部电路与输出晶体管之间用一个光耦合器来进行光隔离。另外,每一个公共模块与其它部分隔离开来。

● 运行指示:

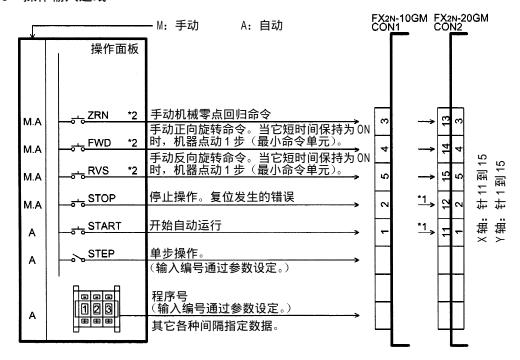
当驱动光耦合器时, LED 点亮, 输出晶体管被置为 ON。

● 输出电流:

参见2.5节。

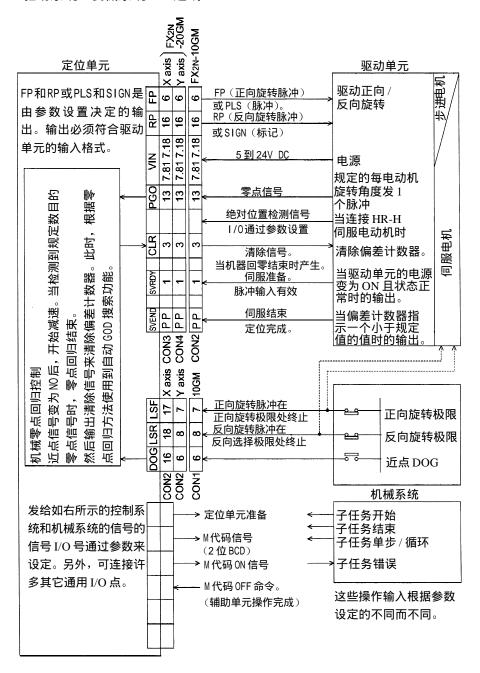
一个输出晶体管的 ON 电压约为 1.5V。

当驱动半导体等时,确保设备的输入电压不超过此值。


● 响应时间:

在光耦合器的激活或停用和输出晶体管的打开和关闭之间的响应时间,参见 2.5 节。

● 开路漏电流:


漏电流小于等于 0.1 mA。

3.2.3 操作输入连线

- *1: 在同步2轴操作中,连接X轴或Y轴。
- *2: 在自动模式下(当 MANU 输入是 OFF 时),输入端子[ZRN],[FWD]和[RVS]能作为通用输入使用。

3.2.4 驱动系统 / 机械系统 I/O 连线

3.2.5 手动脉冲发生器连线

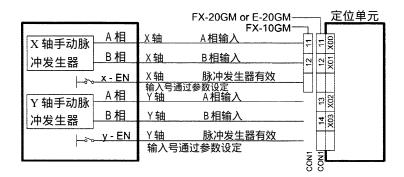
本部分解释使用手动脉冲发生器时的连线。

当使用手动脉冲发生器时,需要进行参数设定。

在以下所示的连线中,参数如下设置。

参数 39: 手动脉冲发生器 设为"1": 单脉冲发生器。

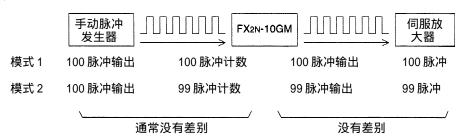
设为"2": 双脉冲发生器。


参数 40: 放大率 根据需要设定。(1 到 255)

参数 41: 分度 根据需要设定。(0 到 7: FX_{2N}-20GM)

参数 42:输入使能 一个手动脉冲发生器能在 FX₂√-20GM 中的 X

轴或Y轴上改变。


(X02到X03: FX_{2N}-10GM, X02到X67: FX_{2N}-20GM)

• 当手动脉冲发生器与 FX_{N} -10GM 一起使用时,操作如下:

当放大率为1。(参数40)

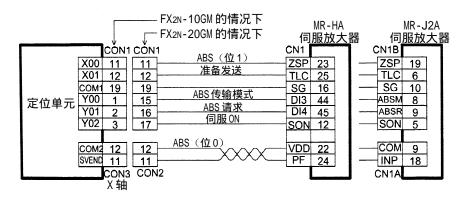
在 FX_{2N} -10GM 中,手动脉冲发生器的脉冲输出数目和 FX_{2N} -10GM 计数(模式 2)的脉冲数目间的差别很少出现。

但此差别在伺服放大器和 FX_{2N}-10GM 的当前值下不会出现。

• 使用 NPN 集电极开路型的手动脉冲发生器。

3.2.6 绝对位置(ABS)检测连线

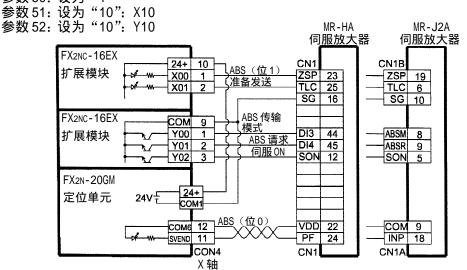
本部分解释当连接三菱 MR-H/MR-J2/MR-J2-Super 伺服电机和使用绝对位置检测 (ABS) 功能时的连线。


为了检测绝对位置,必须设定编号为50,51和52的参数。

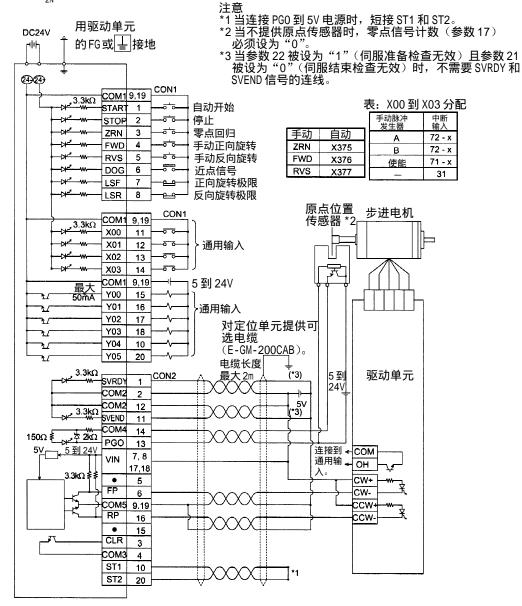
当使用通用 I / 0 时 (FX_{2N}-10GM, FX_{2N}-20GM)

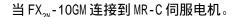
下图给出了当使用定位单元内置的通用 I/O 点时的连线例子。

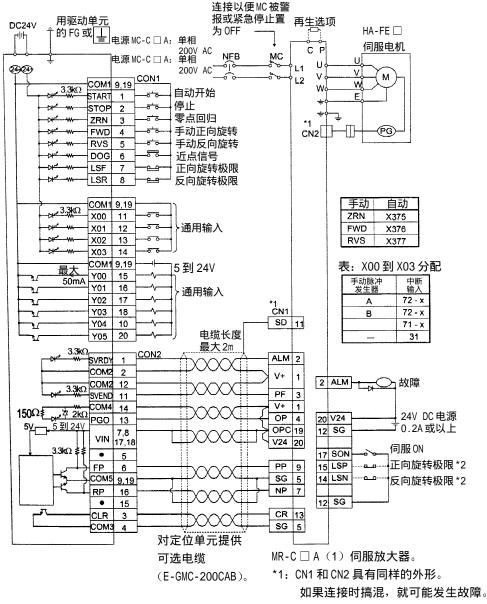
下例中,参数如下设置。


参数 50: ABS 接口 设为 "1": 有效 参数 51: ABS 输入标题号 设为 "0": X00 参数 52: ABS 控制输出标题号 设为 "0": Y00

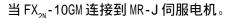
当连接扩展模块时(FX_{2N}-20GM)

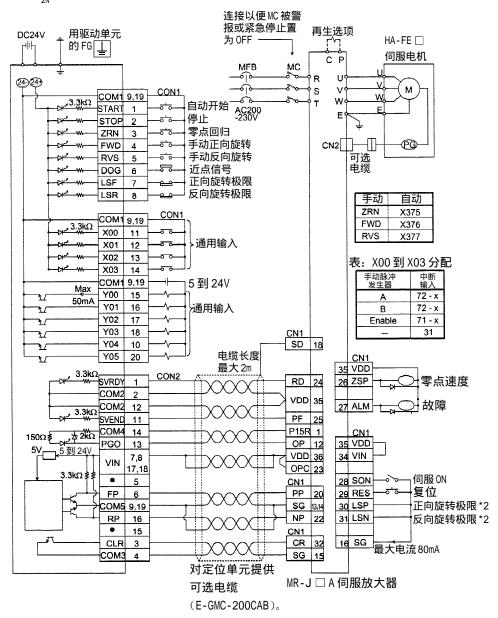

当在 FX_{N} -20GM 的 CON5 上连接扩展模块来进行绝对位置检测时,下图中的例子表示了此时的连线情况。

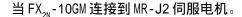

参数 50: 设为"1"

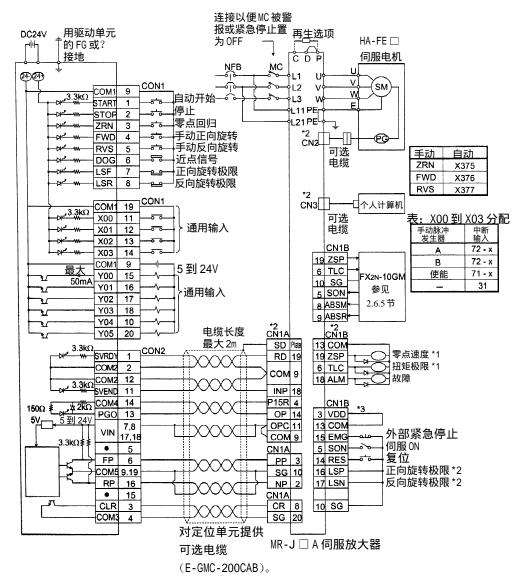


3.2.7 I/0 连接例子

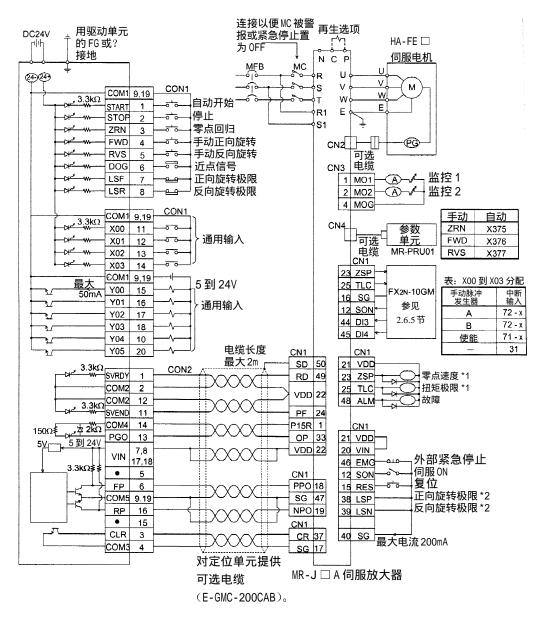

当 FX_{2N}-10GM 连接到步进电机。

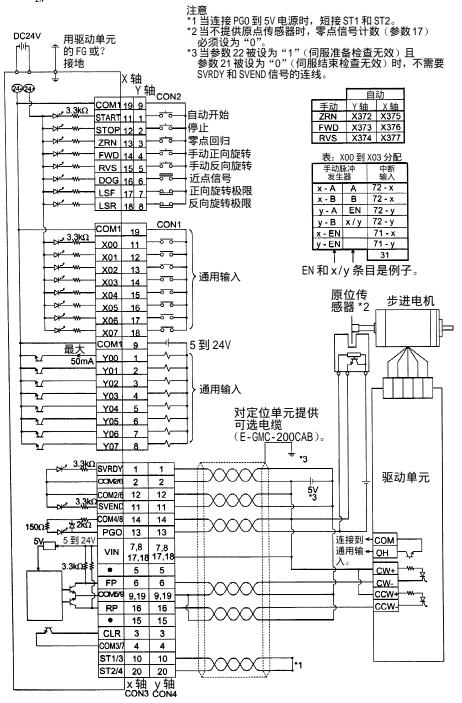




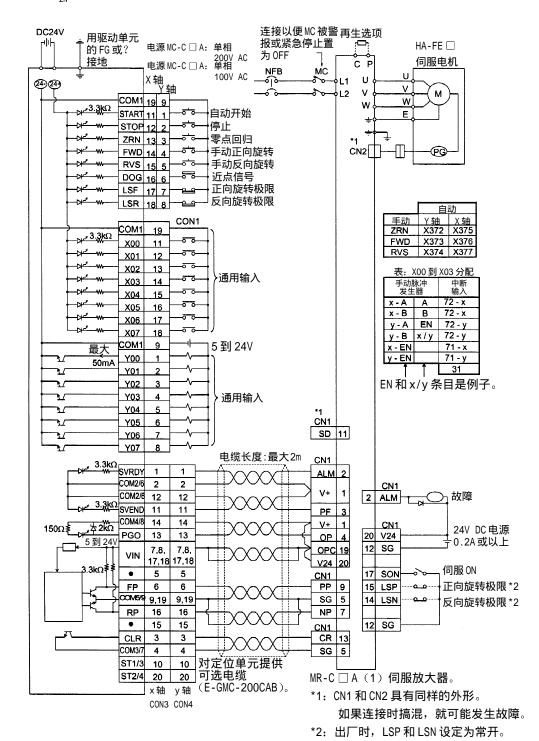


*2: 出厂时,LSP 和 LSN 设定为常开。 接线可以略掉。



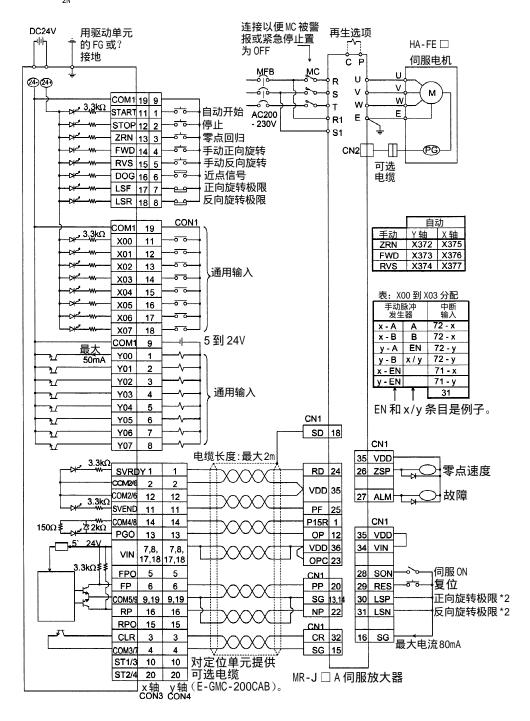

- *1 当检测绝对位置时连接定位单元。
- *2CN1A,CN1B,CN2 和 CN3 具有相同的外形。如果连接时搞混,就可能发生故障。
- *3 当使用内部电源时连接。

当 FX_{2N}-10GM 连接到 MR-H 伺服电机。

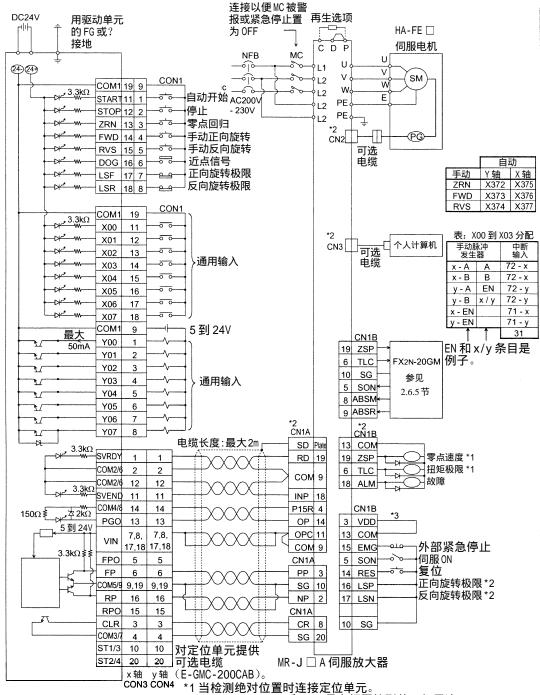


*1. 当检测绝对位置时连接定位单元。

当 FX_{2N}-20GM 连接到步进电机。

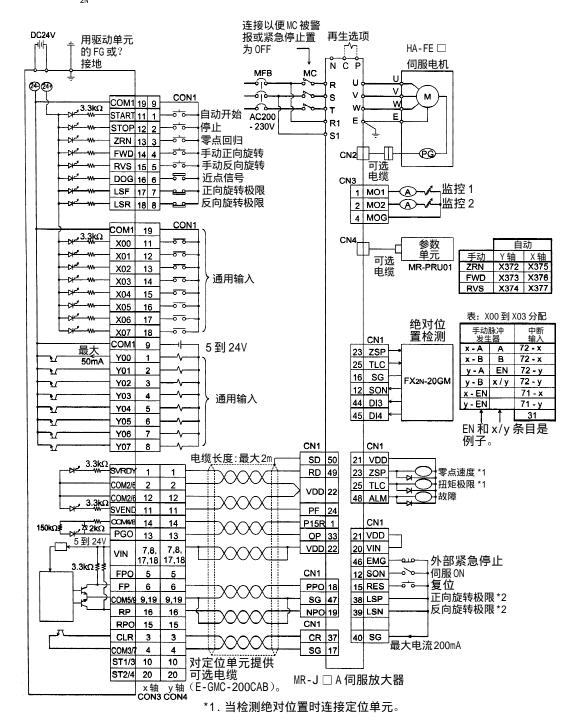


当 FX_{2N}-20GM 连接到 MR-C 伺服电机。



接线可以略掉。

当 FX_{2N}-20GM 连接到 MR-J 伺服电机。


当 FX_{2N}-20GM 连接到 MR-J2 伺服电机。

*2CN1A, CN1B, CN2 和 CN3 具有相同的形状。如果连接时搞混,就可能发生故障。

*3 当使用内部电源时连接。

当 FX_{2N}-20GM 连接到 MR-H 伺服电机。

★MITSUBISHI

备忘录

4. 参数

4.1 主要参数注意事项

设置参数来决定定位单元的运行条件。 定位单元可通过与操作规格和控制规格相一致的参数设定来满足各方面的需求。 参数主要分为以下三种类型。

- 定位参数(参数0~) 确定定位控制的单位,速度等。
- I/0 控制参数(参数 30~) 确定与定位单元 I/0 端口相关的内容,如规定程序号的方法,m 代码的目的地等。
- 系统参数(参数100~)确定程序的存储器大小,文件寄存器的数目等。

在 FX_{2N} -20GM 中,独立 2- 轴操作的定位参数和 I/O 控制参数必须对每个 X 和 Y 轴进行设定。同步 2- 轴操作的参数则仅需对 X 轴进行设定。此时不需要 Y 轴的设定。在 FX_{2N} -10GM 中,参数必须对一轴(X 轴)单独地进行设定。

除了一些专用情况外,每一个参数被分配一个特殊数据寄存器(特殊D)。

当通过外部单元的面板设定参数时,同样的数据也同时被设置到这些特殊数据寄存器中。

在运行时,特殊数据寄存器中的数据可使用定位程序来改变。然后,运行可按改变的数据进行。

当电源变为ON时,特殊数据寄存器被参数存储器中存储的数据初始化。

当模式从手动(MANU)转变为自动(AUTO)时,也会发生同样的情况。

- →下页继续。当输入一个值超过了允许范围的参数时,定位单元进行如下操作。
- 用外部设备写参数 发生参数设定错误(错误码: 2000 到 2056),定位单元停止工作。 当此错误发生时,定位单元面板上的 ERROR-x 和 / 或 ERROR-y LED 发亮。 必须写一个正确值到此参数中来清除错误状态。
- 用定位程序来写参数 虽然定位单元不停止工作,但此参数被设为如下值。 当输入值大于有效范围: 与时间和速度相关的参数被设为最大值。 当输入值小于有效范围: 与时间和速度相关的参数被设为最小值。

4. 2 参数表

表 4.1 参数表

	参数编号	项目	描述([]:单位)	初始值	
	2 221-11-9 3	7/1	0: 单位的机械体系	1777112	
	0	单位体系	1: 单位的电机体系	1	
	Ü	十四叶水	2: 单位的综合体系		
	1	脉冲率*1	1 到 65,535[PLS/REV]	2,000	
			1到 999,999		
	2	进给率*2	[um/REV, mdeg/REV, 10 ⁻¹ minch/REV]	2,000	
			0:10°[mm],10°[度],10 ⁻¹ [英寸],10 ³ [PLS]		
	0	目小会会总统	1:10 ⁻¹ [mm],10 ⁻¹ [度],10 ⁻² [英寸],10 ² [PLS]	2	
	3	最小命令单位	2:10 ⁻² [mm],10 ⁻² [度],10 ⁻³ [英寸],10 ¹ [PLS]	2	
			3:10 ⁻³ [mm],10 ⁻³ [度],10 ⁻⁴ [英寸],10 ⁰ [PLS]		
			1 到 153,000[cm/min,10 度/min,英寸/min]		
	4	最大速度	1 到 200,000[Hz]	200,000	
			(对步进电机推荐 5,000Hz 左右)		
			1 到 153,000[cm/min,10 度/min,英寸/min]		
	5	点动速度	1 到 200,000[Hz]	20,000	
			(对步进电机推荐 1,000Hz 左右)		
		目小法庭	1 到 153,000[cm/min,10 度/min,英寸/min]	0	
	6	最小速度	1 到 200,000[Hz]	0	
	7	偏移矫正	0 到 65,535[PLS]	0	
	8	加速时间	1到5,000[ms]	200	
	9	减速时间	1到5,000[ms]	200	
	10	插补时间常数	0到5,000[ms]	100	
	11	脉冲输出类型	0:FP=正向旋转脉冲,RP=反向旋转脉冲	0	
			1:FP=旋转脉冲,RP=方向规定		
定	12	旋转方向	0:通过正向旋转脉冲(FP)增加电流值.	0	
位	12	I)此书 / 门 门	1:通过正向旋转脉冲(FP)减少电流值	U	
参	40	零点回归位置	1 到 153,000[cm/min,10 度/min,英寸/min]	400,000	
数	13	速度	1到 200,000[Hz]	100,000	
^^	14	何 / 二 市 庄	1 到 153,000[cm/min,10 度/min,英寸/min]	1,000	
	14	爬行速度	1到 200,000[Hz]	1,000	
	15	回零位置方向	0:电流值增加的方向	1	
	15	凹令世重万凹	1:电流值减少的方向		
	16	机械零点	-999,999到+999,999[PLS]	0	
	17	零点信号计数	0 到 65,535[次]	1	
	17	次数	·	ı	
			0:在近点 DOG 正向结束处开始计数		
		零点信号计数	(OFF—ON)		
	18		1:在近点 DOG 反向结束处开始计数	1	
		开始点	(ON OFF)	1	
			(ON—OFF)		

表 4.1:参数表

	参数编号	项目	描述([]:单位)	初始值
	19		0:常开触点(A:触点)	0
		700 mi) (12-14	1:常闭触点(B-触点)	Ŭ
	20	LS 逻辑	0:常开触点(A:触点) 1:常闭触点(B-触点)	0
			0 到 5,000ms(当设为"0"时,伺服和	
	21	错误判别时间	检查无效)	0
	22	伺服准备检查	0:有效,1:无效	1
定位参数	23	停止模式	0,4:使停止命令失效 1:使能剩余距离驱动.(在插补操作中跳到 END 指令.) 2:忽略剩余距离.(在插补操作中跳到 END 指令.) 3,7:忽略剩余距离,并跳到 END 指令. 5:进行剩余距离驱动(包括插补操作). 6: 忽略剩余距离.(在插补操作中跳到 NEXT 指令.)	1
	24	电气零点	-999,999到+999,999[PLS]	0
	25 软件极限(大)		-2,147,483,648 到+2,147,483,647 在"参数 25<=参数 26"的情况下,软 件极限是无效的.	0
	26	软件极限(小)	-2,147,483,648 到+2,147,483,647 在"参数 25<=参数 26"的情况下,软 件极限是无效的.	0

表 4.1:参数表

	参数编号	项目	描述([]:单位)	初始值	
			0:程序号0(固定)		
	1 20	程序编号规定方	1:数字开关的 1 位(0 到 9)	0	
	30	法	2:数字开关的 2 位(00 到 99)	١	
·			3:由专用数据寄存器给定(D9000,D9010)		
	31	数字开关分时读	FX₂N-20GM: X0 到 X67, X372 到 X374	0	
	31	输入的标题号	FX _{2N} -10GM: X0 到 X3	1 0	
	32	数字开关分时读	FX₂N-20GM:Y0 到 Y67	0	
	32	输出的标题号	FX _{2N} -20GM: YO 到 X5	0	
	33	数字开关读间隔	7到 100[ms](增量:1ms)	20	
	34	RDY 输出有效性	0:无效,1:有效	0	
	35	RDY 输出编号	FX _{2N} -20GM: YO 到 Y7	0	
	33	NUI制山柵与	FX _{2N} -10GM: YO 到 Y5	0	
	36	m 代码外部输出 有效性	0:无效,1:有效	0	
	37	m 代码外部输出	FX₂N-20GM:Y0 到 Y57(占 9 点.)	0	
		编号	FX₂N-10GM:Y0(占6点)	1 0	
定	38	m代码OFF命令输入号	FX₂N-20GM: X0 到 X67, X372 到 X377	0	
位			FX₂N-10GM: X0 到 X3, X375 到 X377		
参	39	手动脉冲发生器 有效性	」 _{给 生 哭} │ 0:无效,1:有效(1 脉冲发生器).		
数			2:有效(2脉冲发生器)	0	
			(在 FX₂ℵ-10GM 中,仅有"0"或"1".)		
	40	手动脉冲发生器 的每脉冲放大率	x1 到 x255	1	
	41	放大结果的分配	FX _{2N} -20GM: 2 ⁿ , n=0 到 7	0	
	71	率	FX₂N-10GM:不可获得	_	
	42 手动脉冲发生器 的输入标题号		FX _{2N} -20GM:X2 到 X67(一个手动脉冲发生 器占一点.)	2	
		印制八小巫与	FX₂N-10GM: X2 到 X3(占九点)	_	
	43 到 49	_	_	_	
	50	ABS 接口	0:无效,1:有效	0	
			FX₂ℵ-20GM: XO 到 X66(占两点)		
	51	ABS 输入标题号	FX _{2N} -10GM: XO 到 X2, X375 到 X376	0	
			(占两点)		
	[ABS 控制输出标	FX _{2N} -20GM: Y0 到 Y65(占三点)		
	52	题号	FX _{2N} -10GM: Y0 到 Y3	0	
			(占三点)		
	53	步进操作	0:无效,1:有效	0	

表 4.1:参数表

	参数编号	项目	描述([]:单位)	初始值
	54 步进模式输入号		FX₂N-20GM: X0 到 X67, X372 到 X377 (占一点) FX₂N-10GM: X0 到 X3, X375 到 X377 (占一点)	0
1/0	55	_	-	
控制参数	56	FWD/RVS/ZRN 通用输入	0:使通用输入无效. 1:在 AUTO 模式下使能通用输入. (特殊 M 的命令无效) 2:通用输入总有效. (特殊 M 的命令无效) 3:在 AUTO 模式下使能通用输入. (特殊 M 的命令有效) 4:通用输入总有效. (特殊 M 的命令有效)	0

表 4.1:参数表

	参数编号	项目	描述([]:单位)	初始值
	100	<u>→</u> ^+ □□ . .	0:8K 步,1:4K 步	20GM:0
	100	存储器大小	在 FX _{2N} -10GM 中 ,仅有"1(4K 步)".	10GM:1
	101	文件寄存器	0 到 3,000[点](通过 D4,000 到 D6,999 分配)	0
	102	电池状态	0:LED 亮,不使 GM 有输出(M9127:OFF) 1:LED 暗,不使 GM 有输出(M9127:ON) 2:LED 暗,使 GM 有输出(M9127:OFF) FX _{2N} -10GM 中没有	20GM:0
	103	电池状态输出号	FX _{2N} -20GM:Y0 到 Y67	0
			FX _{2N} -10GM 中没有	_
	104	子任务开始	0:当从模式 MANU 转为 AUTO 时 1:当通过参数 105 设置的输入打开时 (AUTO 模式) 2:当从模式 MANU 转为 AUTO 或通过参数 105 设置的输入打开时(AUTO 模式)	0
	105	子任务开始输入	FX _{2N} -20GM:X0 到 X67,X372 到 X377	0
		יי מור מא ויי כל בו	FX _{2N} -10GM: X0 到 X3, X375 到 X377	0
系统参数	106	子任务停止	0:当从模式 MANU 转为 AUT0 时 1:当通过参数 107设置的输入打开或从 模式 MANU 转为 AUT0 时	0
	107	子任务停止输入	FX _{2N} -20GM:X0 到 X67,X372 到 X377	0
	107	」正为伊亚柳八	FX _{2N} -10GM:X0 到 X3,X375 到 X377	0
	108	子任务错误	0: 当错误发生时,不使定位单元给出输出 出 1: 当错误发生时,使定位单元给出输出	0
	109	子任务错误输出	FX _{2N} -20GM:Y0 到 Y67	0
		, 1233 M & 100 M	FX _{2N} -10GM:Y0 到 Y5	0
	110	子任务操作模式 转换	0:通用输入无效 当 M9112 被程序设置时,机器进行步进操作. 当 M9112 被程序复位时,机器进行循环操作. 1:使能通用输入步进操作和循环操作通过参数 111 规定的输入或 M9112 来改变.	0
	111	子任务操作模式	FX _{2N} -20GM: X0 到 X67, X372 到 X377	0
	111	转换输入	FX _{2N} -10GM:X0 到 X3,X375 到 X377	0

^{*}1 表明电机一次旋转所发出的命令脉冲(PLS/REV)数目. 当参数0被设为"1 (单位的电机体系)"时,此参数无效.

*2 表明电机一次旋转给定的运动量(um/REV,mdeg/REV.10-1 minch/REV). 当参数 0 被设为"1(单位的电机体系)"时,此参数无效.

4.3 定位参数

4.3.1 定位参数

设定使用的单位

参数 0: 单位体系

设定所使用的位置和速度单位。

表 4.2 单位体系

 FX_{2N}-10GM
 FX_{2N}-20GM

 设置="0":根据"mm(毫米),deg(度),1/10inch(英寸)等"来控制位置,这叫做单位的机械体系.

 设置="1":根据"PLS"(脉冲)来控制位置,这叫做单位的电机体系(初始值).

设置="2":根据单位的机械体系来控制位置,根据单位的电机体系来控制速度,这叫做单位的综合体系.

根据参数0的设置,参数由下表中列出的单位来表示。

表 4.3 参数的单位

参数号	"0":机械	"1":电机	"2":综合
第1,第2	根据需要设置	忽略	根据需要设置
第 3	mm, deg, 10 ⁻¹ inch	PLS	mm, deg, 10 ⁻¹ inch
第 4,第 5,第 6 第 13,第 14	cm/min,x10deg/min, Inch/min	Hz	Hz

仅在参数 0 被设为" 0(单位的机械体系)"或"2(单位的综合体系)"时,参数 1 和参数 2 才有效。

当参数0被设为"1(单位的电机体系)"时,它们被忽略。

使用如下公式表达单位的电机体系和单位的综合体系间的关系。

参数 1: 脉冲率 (脉冲率用 "A"来表示。) 设定加到驱动单元上的电机每转的脉冲数。

表 4.4: 脉冲率

FX _{2N} -10GM	FX _{2N} -20GM
1 到 65,535PL	S (脉冲) /REV (转)

当伺服马达配有电子齿轮时,必须考虑它的放大率。脉冲率和电子齿轮间的关系如下所示。

脉冲率(参数1)=编码器分辨率(定位反馈脉冲)/电子齿轮(CMX/CDV)

参数 2: 进给率 (进给率由 "B"来表示。) 设定电机每转机器的行程。

表 4.5 进给率

FX _{2N} -10GM	FX _{2N} -20GM		
1 到 999,999um/REV			
1 到 999,999mdeg/REV			
1 到 999,99	99X10 ⁻¹ minch/REV		

参数3:最小命令单位

设定由定位程序规定的行程单位

表 4.6 最小命令单位

5V 000U TF	第 0 号参数				
FX _{2N} -20GM 和 FX _{2N} -10GM 中	设为 "0": 单位的机械体系。			设为"1"单位的电	
的设置	设为	"2": 单位的约	机体系		
7702	Mm	Deg	Inch*1	PLS	
设为: "0"	10°	10°	10 ⁻¹	10 ³	
设为: "1"	10 ⁻¹	10 ⁻¹	10 ⁻²	10 ²	
设为: "2"	10 ⁻²	10 ⁻²	10 ⁻³	10 ¹	
设为: "3"	10 ⁻³	10 ⁻³	10 ⁻⁴	10°	

^{*1: 10-1} 英寸 =2.54 毫米

例子:

当参数 0 设为 "0",参数 3 被设为 "2",同时 "X10-2mm" 被选择时。 在" cod 00(DRV) x1000 y2000"的情况下,x 被设为 "10mm",y 被设为 "20mm"。

当参数 0 设为 "1",参数 3 被设为 "2",同时 "X10¹PLS" 被选择时。 在"cod 00(DRV) x1000 y2000"的情况下,x 被设为 "10,000PLS",y 被设为 "20,000PLS"。

单位的机械体系的概念

当参数 0 (单位体系)被设为"0"或"2"时,就选择了单位的机械体系("mm","deg","inch"等)。此时,只有选择"mm(毫米)","deg(度)","inch (英寸)"等中的任一个作为单位。但因为定位程序中所有的定位参数,定位数据和速度数据采用同一单位,所以不用顾及单位,只要设定值相等,就可得到相同的脉冲输出。

例子:

条件

脉冲率 : 4,000 [PLS/REV]

进给率 : 100 [μ m/REV, mdeg/REV, × 10⁻¹minch/REV]

最小命令单位 : 3 (运动量级被看作" 10-3mm" ," 10-3deg" " 10-3 inch"。)

伺服放大器中的电子齿轮: 1/1

当设定其为"mm"时

在移动量为 100[X10⁻³mm],运行速度为 6[cm/min]的定位操作中,可给出以下的脉 冲输出。

产生的脉冲量 = 移动量*1/ 进给率*1X 脉冲率

=100 [\times 10⁻³mm]/100 [μ m/REV] \times 4,000 [PLS/REV]

=4,000 [PLS]

脉冲频率 = 运行速度*1/ 进给率*1X 脉冲率

=6 [cm/min] \times 10⁴/60/100 [μ m/REV] \times 4,000 [PLS/REV]

=4,000 [Hz]

*1 此单位在计算中调整。1 mm = 10³ μ m, 1 cm = 10⁴ μ m, 1 min = 60 s

当设定其为 "deg"时

在移动量为 100[X10⁻³deg],运行速度为 6[deg/min]的定位操作中,可给出以下的脉冲输出。

产生的脉冲量 = 移动量 *2/ 进给率 *2X 脉冲率

=100 [\times 10⁻³deg]/100 [mdeg/REV] \times 4,000 [PLS/REV]

=4,000 [PLS]

 $脉冲频率 = 运行速度^{*2}/ 进给率^{*2}X 脉冲率$

=6 [deg/min] \times 10⁴/60/100 [mdeg/REV] \times 4,000 [PLS/REV]

=40,000 [Hz]

*2 此单位在计算中调整。1 deg = 103 mdeg, 1 min = 60 s

当设定其为"inch"时

在移动量为 100[X10⁻⁴inch],运行速度为 6[inch/min]的定位操作中,可给出以下 的脉冲输出。

产生的脉冲量 = 移动量*3/ 进给率*3X 脉冲率

=100 [\times 10⁻⁴ inch]/100 [\times 10⁻¹ minch/REV] \times 4,000 [PLS/REV]

=4,000 [PLS]

脉冲频率 = 运行速度*3/ 进给率*3X 脉冲率

=6 [inch/min] $\times 10^4/60/100$ [$\times 10^{-1}$ minch /REV] $\times 4,000$

[PLS/REV]

=40,000 [Hz]

*3 此单位在计算中调整。1 inch = 103 minch, 1 min = 60 s

怎样使用电子齿轮

一些伺服电机需要 200kHZ 或以上(计算得到)的脉冲序列,以达到额定旋转速度。例如,在额定旋转速度为 3,000 rev(转)/min(分)的情况下,操作三菱公司制造的 HC-MF 系列伺服电机所需要的命令脉冲频率如下所示。(假设电子齿轮比率是初始值 "1/1"。)

$$f0 = Pt \times \frac{N0}{60} \times \frac{CDV}{CMX}$$

 $f0 = 8{,}192 \times \frac{3{,}000}{60} \times 1$

f0: 命令脉冲频率[Hz](集电极开路型)

CMX: 电子齿轮(命令脉冲放大率的分子)

CDV: 电子齿轮(命令脉冲放大率的分母)

NO: 伺服电机的旋转速度[rev/min]

Pt:编码器的分辨率(定位反馈脉冲)[PLS/REV]

(Pt 是 HC-MF 系列中的"8,192"。)

$$f0 = 409,600[Hz]$$

但因为集电极开路型伺服放大器的输入命令脉冲和定位单元的脉冲输出最大为 200kHz(插补操作时是 100kHz),所以在 409,600Hz 下操作是不可能的。 在此情况下,必须更换伺服放大器中的电子齿轮。

可按以下要求获取电子齿轮。

$$\frac{CMX}{CDV} = Pt \times \frac{N0}{60} \times \frac{1}{f0}$$

$$\frac{CMX}{CDV} = 8{,}192 \times \frac{3{,}000}{60} \times \frac{1}{200{,}000}$$

$$\frac{CMX}{CDV} = \frac{256}{125}$$

f0: 命令脉冲频率[Hz](集电极开路型)

CMX: 电子齿轮(命令脉冲放大率的分子)

CDV: 电子齿轮(命令脉冲放大率的分母)

NO: 伺服电机的旋转速度[rev/min]

Pt:编码器的分辨率(定位反馈脉冲)[PLS/REV]

(Pt 是 HC-MF 系列中的"8,192"。)

下表列出了通过以上计算获得的主要电子齿轮和脉冲率。

表 4.7: 主要电子齿轮和脉冲率的设置

伺服电机 的额定旋	伺服放大器		命令脉冲频率 (200kHz)		命令脉冲频率 (100kHz) (在插补操作中)	
转速度	最大输入 脉冲频率	编码器 分辨率 (反馈脉冲)	电子齿轮	脉冲率 (参数 1)	电子齿轮	脉冲率 (参数 1)
	2001411-	4,000 PLS/REV	1/1		2/1	2,000 PLS/REV
3,000 r/min	200kHz (集电极开 路型)	8,192 PLS/REV	256/125	4,000 PLS/REV	512/125	
		16,384 PLS/REV	512/125		1024/125	
2,000	1 田 秘 开 路	4,000 PLS/REV	2/3*1	6,000 PLS/REV	4/3	3,000 PLS/REV
r/min		16,384 PLS/REV	1024/375	6,000 PLS/REV	2048/375	1,500 PLS/REV
1,000	200kHz(集 电极开路	4,000 PLS/REV	1/3*1	12,000 PLS/REV	2/3*1	6,000 PLS/REV
r/min	型)	16,384 PLS/REV	512/375	12,000 PLS/REV	1024/375	3,000 PLS/REV

¹ 如果电子齿轮小于"1/1",可把它设为"1/1",并限制定位单元给出的命令脉冲频率。在此情况下,确保伺服电机的旋转速度不超过最大旋转速度。(可通过定位单元中的参数4来设定最大速度。)

实际值可能根据所使用的伺服电机/伺服放大器的规定和所需运行速度的不同而不同。仔细阅读伺服电机和伺服放大器的手册,然后根据所需应用设定正确值。

参数 4: 最大速度

在此参数中设定最大速度。当没有在定位程序中规定速度时,机器按照在此设定的速度运行。其它的速度必须被设定为等于或小于此最大值的值。

表 4.8 最大速度

FX _{2N} -10GM	FX _{2N} -20GM
机械体系: 0 到 153,000(cm,/r	min,10deg-min,inch/min)*1
电机体系: 0 到 200,000Hz	

^{*1:} 当转换为脉冲时是 200kHz 或更小。

参数5: 点动速度

设定手动操作的速度(通过 FWD(正向)/RVS(反向)输入 ON 或外部单元的 JOG+/-操作)。

设定的参数值应等于或小于以上设定的参数4。

表 4.9: 点动速度

FX _{2N} -10GM	FX _{2N} -20GM		
机械体系: 0到153,000(cm,/min,	10deg-min, inch/min)*1		
电机体系: 0 到 200,000Hz			

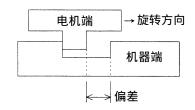
^{*1:} 当转换为脉冲时是 200kHz 或更小。

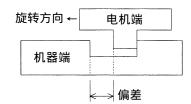
参数 6: 最小速度(在插补时无效)

设定系统启动时所采用的速度。

表 4.10: 最小速度

FX _{2N} -10GM	FX _{2N} -20GM
机械体系: 0到 153,000(cm,/min,10deg-min,inch/min)*1	
电机体系: 0 到 200,000Hz	


^{*1:} 当转换为脉冲时是 20kHz 或更小。


参数 7: 偏差补偿 (除了 cod 00 指令外有效)

当旋转方向被通过cod 00(DRV)指令反向时,此参数设置的补偿量被自动加到行程量上,然后可进行定位。但补偿量不加入当前值寄存器中。当在开启电源后立即通过cod 00(DRV)指令操作机器时,机器把此情况看作在当前值增加的方向操作后的情形,并纠正此偏差。

- 当 cod 00 指令设定一个操作,而此操作按当前值增加的方向运行时,机器不进行 插补。
- 当 cod 00 指令设定一个操作,而此操作按当前值减少的方向运行时,机器进行插补。

在电源启动后,立即通过除了 JOG (点动)操作指令,回零点指令或 cod 00 指令外的任何指令操作机器时,机器纠正在反向旋转方向的 cod 00 (DRV)指令前进行的操作的偏差。

如下的其它补偿可在定位程序中进行。

Cod73 (MOVC): 行程补偿, Cod74 (CNTC): 中点补偿, Cod75 (RADC): 径向补偿, Cod76 (CANC): 补偿取消 (除了偏差)。

表 4.11: 偏差补偿

FX _{2N} -10GM	FX _{2N} -20GM
机械体系: 0到 65,535*1	
电机体系: 0 到 65,535PLS(脉冲)	

^{*1} 参数 3 决定此单位,脉冲转换值必须变为 65,535PLS 或更小。

参数8:加速时间

设定达到最大速度所需时间。

表 4.12: 加速时间

FX _{2N} -10GM	FX _{2N} -10GM
0 到	5,000ms

当参数8设为0时,机器实际上在1ms内加速。

参数9: 减速时间

设定停止机器所需时间。

表 4.13: 减速时间

FX _{2N} -10GM	FX _{2N} -10GM
0 到 5,000ms	

当参数9设为0时,机器实际上在1ms内减速。

参数 10: 插补时间常数

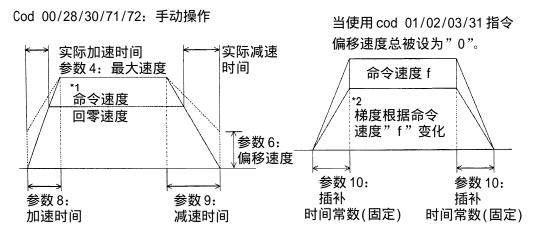

设定达到程序规定速度所需的时间。(偏差速度通常被看作"0"。) 当在 FX_{2N} -20GM 中进行插补控制时,此参数有效。

表 4.14: 插补时间常数

FX _{2N} -10GM	FX _{2N} -20GM
0 到 5,000ms*1	0 到 5,000ms

 * 1 在 FX_{2N} -10GM 中,当使用 cod01/cod31 命令时,加速 / 减速时间被设为此参数中的值。

前页描述的参数有下图所示的关系。

- 1 加速时间表明达到最大速度所需的加速时间。因此,当所有的命令速度,回零速度和慢移速度等于或小于最大速度时,实际加速时间将变短。
- *2 当进行插补控制时,插补时间常数总是固定的。因此,加速 / 减速梯度根据命令速度的变化而改变。如果没有规定速度," 100kHz"被自动赋予 FX_{2N} -20GM,且" 200kHz"被自动赋予 FX_{2N} -10GM。在 FX_{2N} -10GM中,进行多步速度操作。

前页描述的参数有下图所示的关系。

連度命令值 ×
$$\frac{$$
 参数 $1(PLS / REV)}{$ 参数 $2(\mathbf{m}m / REV, m \deg / REV, 10^{-1} \min ch / REV)} \times \frac{10^{-4}}{60}$

cm/min 10deg/min 确保通过如上公式获得的值在以下范围内。

10deg/min 参数 4/参数 5 的值 <200,000Hz

参数6的值<20,000Hz

参数 11: 脉冲输出格式

设定驱动单元的脉冲输出格式。

表 4.15: 脉冲输出格式

FX _{2N} -10GM	FX _{2N} -20GM
设定= "0": 正向旋转脉冲和反向旋转脉冲	
设定="1":旋转脉冲和方向规定(不可能进行插补操作)	
脉冲格式参见下图	

当脉冲波形处于 L 水平时 (晶体管为 ON 时), 定位单元上的 LED 点亮。

表 4.16: 脉冲输出图

设定= "0"	设定= "1"
FP=正向旋转脉冲。	FP=旋转脉冲。
RP=反向旋转脉冲。	RP=方向规定。
FP VIVIVE OFF ON OFF RF ON	PLS OFF OFF 送向

参数 12: 旋转方向设定电机旋转方向。表 4.17: 旋转方向

בייייייייייייייייייייייייייייייייייייי	
FX _{2N} -10GM	FX _{2N} -20GM
设定="0": 当正向旋转脉冲(F	P)是输出时,当前值增加。
设定="1": 当正向旋转脉冲(F	P)是输出时,当前值减少。

参数13: 零点回归速度

当机器回到零点时,设定所需的速度。该设定值必须等于或小于参数4中设定的最大速度。

表 4 18. 零点回归速度

以 … 。	
FX _{2N} -10GM	FX _{2N} -20GM
机械体系: 1 到 153,000(cm/min,x10deg/min,inch/min)*1	
电机体系: 10 到 200,000Hz	

^{*1} 转换为脉冲时为 200kHz 或更小。

参数 14: 爬行速度

在近点 DOG 信号被打开后,设定所采用的低速度。

表 4.19: 爬行速度

FX _{2N} -10GM	FX _{2N} -20GM
机械体系: 1 到 15,300(cm/min,x10deg/min,inch/min)*1	
电机体系: 10 到 200,000Hz	

____ *1 转换为脉冲时为 200kHz 或更小。

参数 15: 零点回归方向

当发出零点回归指令时,按机器运动的方向来设定方向。

表 4.20: 零点回归方向

FX _{2N} -10GM	FX _{2N} -20GM
设定="0":当前值增加的方向。	
设定="1":当前值减小的方向。	

参数 16: 机械零点地址

当完成零点回归操作时,按机器的配置设定当前地址。

表 4.21: 机械零点地址

FX _{2N} -10GM	FX _{2N} -20GM
-999,999 到+999,999	

设定值的单位由参数 0 和参数 3 来决定。此处设定的值被看作绝对地址。当进行绝对位置检测(ABS)时,设置此参数为"0"。

参数 17: 零点信号计数

在 DOG 开关变为 ON 或 OFF 后,设定将要进行计数的零点信号的数目(计数定时由参数 18 设定),直到机器停止运行。通常,一个零点信号脉冲是电机每转的输出(在伺服电机的情况下)。

表 4.22: 零点信号计数

FX _{2N} -10GM	FX _{2N} -20GM
0至	J 65,535

当参数 17 被设为"0"时,DOG 输入一打开或关闭,机器就立即停止。(可通过参数 18 来设定计数定时)此时,机器从回零点速度上突然停止(参数 13)。

如果机器可能由于此突然停止而受到损坏,设定某些参数,以使机器能安全地减速到 爬行速度(参数14),然后停止。

参数 18: 零点信号计数开始定时设定零点信号计数的开始点。表 4.23: 零信号计数开始定时

 FX2N-10GM
 FX2N-20GM

 设定="0":当近点止块的前端达到 DOG 开关 (OFF 到 ON)。

 设定="1":当近点止块的后端达到 DOG 开关 (ON 到 OFF)。

 设定="2":当不使用近点止块。

参数 19: DOG 开关输入逻辑设定 DOG 开关输入逻辑。表 4.24: DOG 开关输入逻辑。

27 77 77 77 77 77 77 77 77 77 77 77 77 7			
FX _{2N} -10GM	FX _{2N} -20GM		
设定="0": 常开。(DOG 开关在近点	点关闭。)		
设定="1":常闭。(DOG 开关在近点	点打开。)		

参数 20: 极限开关逻辑

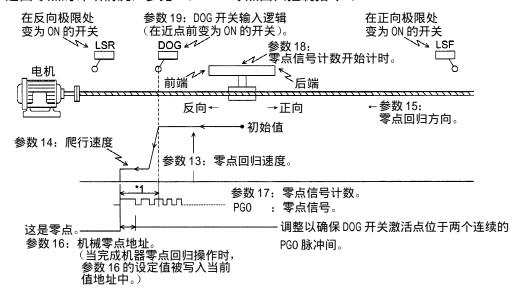

设定用来确定机器运行极限的极限开关(LS)的逻辑。除了极限开关,也可使用软件极限(通过参数 25 和 26 设置)。

表 4.25: 极限开关逻辑

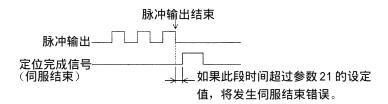
FX _{2N} -10GM	FX _{2N} -20GM
设定="0":常开。(极限开关在极限处关闭	。)
设定="1":常闭。(极限开关在极限处打开	。)

参数 13 到参数 20 控制下图所示的部分。

返回零点的详细情况,参见"8.2.1 零点回归控制指令"。

1 从驱动单元发送到定位单元的零点信号脉冲(PGO)数目被进行计数,当此计数值 达到一个给定值时,操作停止。通常,电机每转一转发出一个零点脉冲。

可通过以下四种方法之一发出机器回零命令。


- 1) 外部输入变为 ON (来自[ZRN]端子)。
- 2) 执行 cod 28 (DRVZ, 机器回零) 命令。
- 3) 从外部单元发出机器回零命令。
- 4) 专用辅助继电器(X轴的 M9008 和 Y轴的 M9024) 变为 ON。

参数 21: 定位完成错误校验时间

如果当输出脉冲结束时,定位完成信号仍没有在设定到此参数中的时间内产生,就会发生伺服结束错误。当伺服结束检查指令(cod 09(CHK))或自动执行伺服结束检察的指令(cod 00(DRV),cod28(DRVZ)等,详细情况参见第5章。)执行时,校验在设定的时间内进行。当此参数被设定为"0"时,不进行伺服结束检查。

表 4.26: 定位完成错误校验时间

FX _{2N} - 10GM	FX _{2N} -20GM
0 到 5000msec(当设为"()"时,进行伺服结束检查)。

如果所使用的电机不带有定位完成信号,配置连线以使其总发出伺服结束信号(通过持续打开 SVEND 信号)或设置参数 21 为"0"。连线参见 3.2.7 节。

参数 22: 伺服准备检查

设定是否确认伺服电机的准备信号 (用来通报准备完成)。

表 4.27: 伺服准备检查

FX _{2N} -10GM	FX _{2N} -20GM
设定="0":有效。当伺服电机处	于准备状态时,脉冲是独立的输出。
设定="1":无效。即使伺服电机	l不处于准备状态,脉冲也是输出。

如果所使用的电机不带有伺服准备信号,配置连线以使其总发出伺服准备信号(通过持续打开 SVRDY 信号)或设置参数 22 为"1"。连线参见 3.2.7 节。

参数 23: 停止模式

当停止指令开始(也就是,当外部输入端子[STOP]或X轴的专用辅助继电器M9002和Y轴的M9018变为ON。)时,设定定位程序的操作模式。

表 4.28: 停止模式

	FX _{2N} -10GM	FX _{2N} -10GM	
设置 ="0"	: STOP 命令是无效的(在 AUTO 模式下)。但错误清除在 MANU 模式下有效。		
或"4"			
设置= "1"	: 发出 STOP 命令时,机器减速到停	止,并在接收到 START 命令时从剩余的距离	
	处重新启动 (剩余距离是有效的)。		
	(当进行插补或中断定位时,程序执行跳到 END。)		
设置= "2"	: 发出 STOP 命令时,机器减速到停	止,并在接收到 START 命令时从下一步处重	
	新启动(剩余距离被忽略,程序执行	亍跳到"NEXT"。)(当进行插补或中断定位	
	时,程序执行跳到 END。)当 STOP 命	i令在 cod 04(TIM)指令执行时发出,程序	
	执行立即继续到下一步,并忽略剩余时间。		
设置 = "3"	: 发出 STOP 命令时,机器减速到停止,程序执行跳到 END,并忽略剩余距离。		
或"7"	当 STOP 命令在 cod 04(TIM)指令执行时发出,程序执行立即继续到下一步,		
	并忽略剩余时间。当STOP命令在m代	码待用时发出,m代码号变为"m02(END)",	
	但 m 代码 ON 信号仍保持为 ON。		
设置= "5"	当在 FX2N-10GM 中执行 cod 31 指令	: 即使在进行插补时(当 M9015(连续路	
	时,设置为"1"或"5"时进行剩	径模式)为 OFF 时),剩余距离驱动仍采	
	余 距 离 驱 动 , 而 设 置 为 " 2" 用与" 1" 一样的方式进行。		
设置= "6"	或"6"时进行 NEXT 跳转。	: 即使在进行插补时(当 M9015(连续路	
		径模式)为 OFF 时), NEXT 跳转仍采用	
		与"2"一样的方式进行。	

- "当正在进行插补时"表示正在执行 cod 01/02/03/31 指令。
- "剩余距离驱动"表示在被 STOP 命令停止的停止点和目标位置间的距离上驱动机器。 "NEXT"跳转不驱动此段距离,但从程序的下一步开始执行操作。

STOP 命令引起的操作。

表 4.29: STOP 命令引起的操作。

设置	FX _{2N} -	FX _{2N} -	STOP 命令引起的操作		乍
以且	10GM	20GM	剩余距离	计时器	M 代码
0,4	√	√	机器不停止	机器不停止	不改变
1	√	√	有效	*1	不改变*3
2	√	√	忽略	*2	不改变*3
3,7	√	√	忽略	*2	*4
5		√	有效	*1	不改变*3
6	_	√	忽略	*2	不改变*3

- *1 计时器停止。机器在剩余的时间中驱动。
- *2 计时器停止。机器在剩余的时间中不驱动。
- *3 当机器等待 m 代码时,m 代码 ON 信号不被停止命令改变。 因此,当通过 NEXT 指令实行跳转后,在定位开始命令前需要 m 代码 OFF 命令。
- *4 m代码号变为m02 (END)。但m代码ON信号不改变。

参数 24: 电气零点

设定由 cod30 (DRVR) 指令执行的电气回零的绝对地址。

表 4.30: 电气零点

FX _{2N} -10GM	FX _{2N} -20GM
-999,999 到+999,999	

单位由参数0和参数3决定。参数24设定的地址表示一个绝对的值。

参数 25: 软件极限(上)

当当前值变得等于或大于设定值时,就会发生极限错误。

表 4.31: 软件极限(上)

FX _{2N} -10GM	FX _{2N} -20GM
设定一个在以下范围内的 32 位值	。-2,147,483,648到+2,147,483,647

FX系列定位控制器

参数 26: 软件极限(下)

当当前值变得等于或小于设定值时,就会发生极限错误。

表 4.31: 软件极限(下)

FX _{2N} -10GM	FX _{2N} -20GM
设定一个在以下范围内的 32 位值	1。-2,147,483,648到+2,147,483,647

- 当达到软件极限时,机器立即以与极限开关造成的停止同样的方式停止 (极限错误)。
- 在进行回零操作或绝对位置检测后,软件极限变为有效。当进行其中的任一个操作后,当前值建立标志 M9144(对 X 轴)和 M9145(对 Y 轴)变为 ON(M9144 仅在 FX_{NN} 20GM 中变为 ON。)。
- 当参数 25 的设定值等于或小于参数 26 的设定值时,软件极限功能无效。
- 当极限错误发生时,将激发错误代码 4004。即使在错误状态下,反向点动操作也是可能的。当机器从超出极限位置的区域返回时,错误被清除。

4.3.2 I/0 控制参数

本部分描述读程序号,输出m代码和检测绝对位置的参数设置,这些都是通过使用定位单元的通用 I/0 来实现的。

参数30:程序编号规定方法

设定程序编号规定来源。程序编号可通过定位单元或可编程控制器来规定。

表 4.33: 程序编号规定方法

 FX2N-10GM
 FX2N-20GM

 设定="0":程序编号固定为"0"

 设定="1":程序编号包括一位,通过外部数字开关来设定为"00"到"09"范围内的值。

 设定="2":程序编号包括两位,通过外部数字开关来设定为"00"到"99"范围内的值。

 设定="3":程序编号通过专用数据寄存器(D)来设定。(用此设置从可编程控制器来规定程序号。)"程序编号被D9000(对2轴同步或X轴(包括FX2N-10GM))和D9010(对Y轴)设置。

[通过数字开关(DSW)设定]

当参数 30 被设为 "1" 或 "2" 时,以下参数必须被设置。(当参数 30 被设为 "0" 或 "3" 时,这些参数无效。)

参数 31: 数字开关(DSW)分时读的标题输入号

规定 DSW 数据的 4 个输入点(1, 2, 4 和 8)的标题输入号。

表 4.34: 数字开关(DSW)分时读的标题输入号

FX _{2N} -10GM	FX _{2N} -20GM
XO	X0 到 X64 X372 到 X374

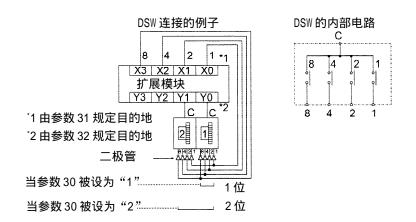
参数 32: 数字开关 (DSW) 分时读的标题输出号

规定 DSW 数据的输出目的地。

表 4.35: 数字开关(DSW)分时读的标题输出号

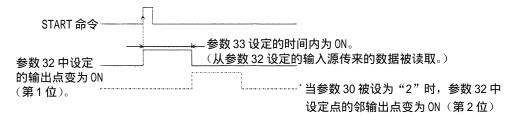
FX _{2N} -10GM	FX _{2N} -20GM
Y0 到 Y5	YO 到 Y67

参数30被设为"1"时,占用一个输出点。

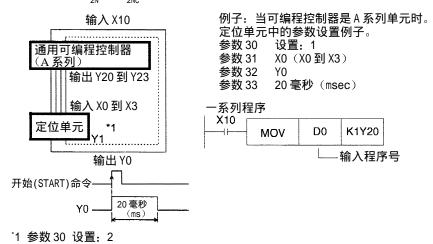

当参数30被设为"2"时,占用两个输出点。

参数33:数字开关(DSW)读间隔

设定 DSW 数据读间隔 (输出 ON 时间由参数 32 设定)。


表 4.36: DSW 读间隔

FX _{2N} -10GM	FX _{2N} -20GM	
7 到 100 毫秒(msed	c) (增量: 1msec)	


当参数 30 被设为 "2"时,在数字开关上加装一个 50V,0.1A 的二极管,以防止循环路径。

当发出 START (开始) 命令后,即使没有发出 EXT 指令,将要执行的用来设定程序号的 DSW 数据也会自动地被立即读出。

从通用可编程控制器来规定程序号

当从通过任一非 FX_{2N}/FX_{2NC} 系列单元的可编程控制器来规定程序号时,执行以下步骤。(当与 FX_{2N}/FX_{2NC} 系列单元连接时,程序号可通过与缓冲存储器的通讯来规定。)

参数34:准备(RDY)输出有效

设定是否输出定位单元的准备(准备完成)信号。

表 4.37: 准备 (RDY) 输出有效

FX _{2N} -10GM	FX _{2N} -20GM	
设定="0":无效。		
设定="1":有效(必须设置参数35。)。		

参数 35: RDY 输出号

当参数34被设为"1"时,设定RDY信号输出的输出点号。(占用一点。)

表 4.38: RDY 输出号

FX _{2N} -10GM	FX _{2N} -20GM
Y0 到 Y5	Y0 到 Y67

参数 36: m 代码外部输出有效

设定m代码是否通过定位单元的通用输出来输出到外部。

(当定位单元连接到 FX_{2N}/ FX_{2NC} 系列 PLC 上时,m 代码可通过与缓冲存储器通讯来发 送。)

表 4.39: m 代码外部输出有效

FX _{2N} -10GM	FX _{2N} -20GM	
设定="0":无效。		
设定="1":有效(必须设置参数37和参数38。)。		

即使当参数 36 被设为 "0 (无效)" 时,与 m 代码相关的专用继电器和专用数据寄存器 (如 m 代码, m 代码 ON 信号, m 代码 OFF 信号等)仍有效。当参数 36 被设为 "1"时,必须设置参数 37 和参数 38。

参数 37: m 代码外部输出号

规定来自定位单元的m代码输出目的地的标题号。

在 FX₂₁-10GM 中,此参数占用 6 点,而在 FX₂₁-20GM 中,它占用 9 点。

表 4.40: m 代码外部输出号

FX _{2N} -10GM	FX _{2N} -20GM	
YO	Y0 到 Y57	
m 代码号输出: YO (1 点)	m 代码号输出:规定的标题号(1点)	
m 代码输出 (1 位 BCD): Y1 到 Y5 ^{*1} (5 点)	m代码输出(2位BCD):连续的8点	
总共占用 6 点。	总共占用9点。	

 $^{-1}$ Y1 到 Y4 输出 1 位。当第 2 位是 "1","3","5","7" 或 "9" 时,Y5 打开。 (在 $FX_{\mathbb{N}}$ - 10 GM 中,输出点的数值固定为 "6"。因此,它仅输出第 2 位的一个二进制位。)

参数 38: m代码 OFF 命令输入号

规定 m 代码 OFF 命令输入的定位单元的输入号。

表 4.41: m 代码 OFF 命令输入号

FX _{2N} -10GM	FX _{2N} -20GM	
X0 到 X3,X375 到 X377	X0 到 X67,X372 到 X377	

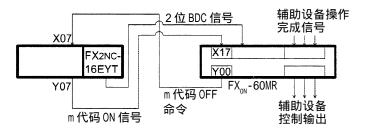
使用 m 代码输出到外部的程序例子

以下程序显示了当使用 FX_{2N} -20GM 和一个通用 PLC 时,辅助单元控制命令通过 I/0 信号传送到 PLC 的控制例子。在此程序中,使用 FX_{ON} -60MR 作为通用 PLC。

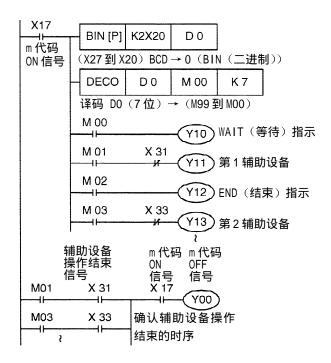
(当定位单元连接到FX_{au}/FX_{auc}系列PLC时,m代码可通过与缓冲存储器通讯来传输。)

操作的描述

- 1) 当在 FX_{2N}-20GM 中执行包含有 m 代码的程序时,m 代码作为 2 位 BCD 码输出(Y10 到 Y17),且 m 代码 ON 信号(Y07)变为 ON。
- 2) 可编程控制器把它们转化为二进制,并对其译码,然后根据译码的输出驱动指定的辅助设备控制输出。
- 3) 在此例中,当 m 代码 "m** (**=00 到 99)"在 FX_{2N} -20GM 中执行时,可编程控制器中的辅助继电器 M** (**=00 到 99,与 m 代码相同)变为 ON。
- 4) 可编程控制器确认辅助设备的操作,然后驱动 m 代码 OFF 命令输出 (Y00)。
- 5) 当接收 m 代码 OFF 命令输入(X07)时,FX_{2N}-20GM 使 m 代码 ON 信号(Y07)变为 OFF,并执行下一条指令。


按如下规定设定参数。

参数 36: "1" m 代码的外部输出有效。


参数 37: "7" m 代码输出目的地的标题号被设为 "Y07"。

参数 38: "7" m 代码 OFF 命令输入号被设为 "X07"。

1/0连接

可编程控制器中的编程

参数39: 手动脉冲发生器设定是否使用手动脉冲发生器。表4.42: 手动脉冲发生器

FX _{2N} -10GM	FX _{2N} -20GM
设定="0":无效。	设定="0":无效。
设定="1":有效(一个脉冲发生器)。	设定="1":有效(一个脉冲发生器)。
_	设定="2":有效(两个脉冲发生器)。

使用 X 轴一侧的参数来设置手动脉冲发生器。(忽略 Y 轴一侧的设置。)在 FX_{24} -20GM 中,当仅设置 X 轴一侧时,X 轴和 Y 轴均能用手动脉冲发生器操作。当通过设置参数 39 为 "1"或 "2"来使能手动脉冲发生器时,必须同时设置参数 40 到参数 42。

(在参数 40 到参数 42 中,分别对 X 轴和 Y 轴进行设置。)

参数 40:通过手动脉冲发生器产生的每脉冲倍加系数输入脉冲与此处设定的值相乘,然后输出。表 4.43 通过手动脉冲发生器产生的每脉冲倍加系数

FX _{2N} -10GM	FX _{2N} -20GM
1 到 255	

参数 41: 倍增结果的除法系数

输入脉冲与设定到参数 40 中的值的乘积被此处设置的值除。

表 4.44: 倍增结果的除法系数

FX _{2N} -10GM	FX _{2N} -20GM	
	2 ⁿ n=0 到 7	

倍加系数和除法系数

输入脉冲的数目与倍加系数相乘,然后除以除法系数,如下所示。

从手动脉冲发生器进入的 输入脉冲数目 × <u>参数 40 (倍加系数: 1 到 255)</u> = 输出脉冲 参数 41 (除法系数: 2n) **1 = 数目

*1 在 FX₂₁-10GM 中没有除法系数。 从手动脉冲发生器中输入的脉冲数目 x 放大率

= 输出脉冲的数目

参数 42: 手动脉冲发生器使能(脉冲输入允许)的标题输入号 当此处设置的输入号是 ON 时,定位单元接收来自手动脉冲发生器的输入。 表 4.45: 手动脉冲发生器使能的标题输入号

FX _{2N} -10GM 的设置	FX _{2N} -20GM 的设置
X2 到 X3(占用 1 点)	X2 到 X67(占用 2 点) 当设置参数 39 为 "2"时,则范围变为 X4 到 X67。

手动脉冲发生器的输入号是固定的。但占用点的数目根据参数39的设定不同而变化。 表 4.46: 手动脉冲发生器的输入号是固定的

输入		FX _{2N} - 10GM	FX _{2N} -20GM	
十別ノ乀		参数 39"1"	参数 39"1"	参数 39 "2"
	X00	A 相	A 相	X轴,A相
这些输入编	X01	B相	B 相	X轴,B相
号是固定的。	X02		_	Y轴,A相
	X03			Y轴,B相
设定到参数	42	使能 (ON)	使能 (ON)	X 轴使能(ON)
设置参数 4 后的输入数		_	在 X 轴和 Y 轴间变化。*1	Y 轴使能 (ON)

- 11 在仅连接一个手动脉冲发生器的情况下,当指定输入是 OFF 时,此发生器能对 X 轴使用,而当指定输入是 ON 时,它能对 Y 轴使用。
- 当处于 MANU 模式或定位单元等待 END(m02)的 AUTO 模式下时,可用手动脉冲发生器进行操作。

在手动脉冲发生器可用的情况下,当使能信号 ON 时,除了 MANU/AUTO 切换输入外, 其它任何输入信号都被忽略掉。 • 当使用手动脉冲发生器时,不能使用来自 cod31 或 cod72 指令的中断输入号,因为来自手动脉冲发生器的输入号与来自 cod31 或 cod72 指令的中断输入号互相重叠。来自 cod 71 指令的中断输入号固定为 X02(当使用 FX_{2N} -10GM 时)或 X04 和 X05(当使用 FX_{2N} -20GM 时)。确保 X02(或 X04 和 X05)不与参数 42 的设置相重叠。(参见 5.6.11 节。)

例子:

当参数 42 是 5 (X05) 时:

X05 变为 ON:来自手动脉冲发生器的输入被接受。(使能)

X06 变为 OFF: X 轴的手动脉冲发生器。 X06 变为 ON: Y 轴的手动脉冲发生器。

参数 50: ABS 接口

设定是否检测绝对位置。

当检测到绝对位置时,当前值自动地被从带有绝对位置检测功能的伺服电机中读出。最后,当电源被重新打开时,回零点能够被保存下来。

(仅当系统第一次启动时,机器必须回到零点。)

表 4.47: ABS 接口

V		
FX _{2N} -10GM	FX _{2N} -20GM	
设定="0": 无效。		
设定="1":有效		

当设定时"1"时,必须设置参数51和参数52。

参数 51: ABS 的标题输入号

设定绝对位置数据输入目的地的标题号。

表 4.48: ABS 的标题输入号

FX _{2N} -10GM	FX _{2N} -20GM
X0 到 X2, X375 到 X376 (占用两点。)	X0 到 X66 (占用两点。)
指定编号(标题): ABS 数据位 1。	指定编号(标题): ABS 数据位 1。
(下一编号): 发送数据准备	(下一编号): 发送数据准备

参数 52: ABS 控制的标题输出号

设定绝对位置数据控制目的地的标题输出号。

表 4.49: ABS 控制的标题输出号

FX _{2N} -10GM	FX _{2N} -20GM
Y0 到 Y2 (占用三点。)	Y0 到 Y3(占用三点。)
指定设备号。	指定设备号。
(标题): ABS 传输模式。	(标题): ABS 传输模式。
(下一编号): ABS 请求和伺服 ON。	(下一编号): ABS 请求和伺服 ON。

绝对位置检测操作

- 1) 当打开定位单元的电源时,它驱动伺服 ON 输出和 ABS 传输模式输出。
- 2) 与这些输出相对应,当使用发送数据 准备信号和 ABS 请求信号来确认接 收和发送时,进行 38(32+6)位的通讯。
- 3) 数据通过 2 位导线 (ABS 位 0 和 ABS 位 1) 进行传输。
- 4) 当检测绝对位置时,设置参数 16 (机器零点地址)为"0"。

伺服准备 SON__ ABS 传输模式 DI3___ 放大器 发送数据准备TLC 输出 定位单元 ABS 请求 DI4 输出 放大器 ABS (位1)ZSP 输出 放大器 ABS (位0) PF 输出 (SVEND) 当前数据(32位) +检查数据(6位)

参数4

参数 53 单步操作 设定是否进行单步操作。

表 4.50: 单步操作

FX _{2N} -10GM	FX _{2N} -20GM
设定=	:"0":无效。
设定	="1":有效

参数 54 必须在参数 53 设置为 "1 (有效)"的情况下设置。

参数54:单步模式输入号

单步模式在此处设置的输入为 ON 时有效。

表 4.51: 单步模式输入号

FX _{2N} -10GM	FX _{2N} -20GM
X0 到 X3, X375 到 X377 (占用 1 点)	X0 到 X67,X372 到 X377(占用 1 点)

单步操作

当参数 53 被设为"1"且参数 54 的输入号设置为 ON 时,单步模式有效。在单步模式下,当 START 信号变为 ON 时,指定的程序一次执行一行。

不使用参数 53 和参数 54,通过使 M9000(对 X 轴), M9001(对 Y 轴)或 M9002(对子任务)变为 0N,也可获得单步模式。如果使用专用辅助继电器,参数 53 和参数 54 的设置不是必需的。

FX系列定位控制器 参数 4

参数 56: FWD/RVS/ZRN 的通用输入声明

专用输入 FWD (正向旋转点动 (JOG)), RVS (反向旋转点动 (JOG)) 或 ZRN (回零)可以被作为通用输入使用。

当 X372 到 X377 (FX_{2N} -10GM 中的 X375 到 X377) 用作参数或程序中的通用输入时,此参数必须被正确设置。

表 4.52: FWD/RVS/ZRN 的通用输入声明

设置	FX _{2N} -10GM			FX _{2N} -20GM
	使用 X372 到 X377 作	FWD/RVS/Z	RN 信号有	专用 M 信号有效
	为通用输入	效		
0	无	总	有	总有
1	在 AUTO 模式下	仅 MAN	U 模式	仅 MANU 模式
		(不是 AU	T0 模式)	(不是 AUTO 模式)
2	总有	j j	E	无
3	在 AUTO 模式下	仅 MAN	U 模式	总有
		(不是 AU	T0 模式)	
4	总有	Ŧ	E	总有

以下表格表明专用辅助继电器的详细情况。

(在 FX_{2N}-10GM 中有仅对 X 轴使用的继电器。)

表 4.53: 专用辅助继电器

命令细节	X 轴	Y轴
机器回零命令	M9004	M9020
正向(FWD)点动命令	M9005	M9021
反向(RVS)点动命令	M9006	M9022

以下表格表明当专用输入作为通用输入使用时的输入号。 $(在FX_{2N}-10GM$ 中有仅对X轴使用的继电器。)

命令细节	X轴	Y轴
ZRN	X375	X372
正向 (FWD)	X376	X373
反向 (RVS)	X377	X374

FX系列定位控制器 参数 4

4.3.3 系统参数

系统参数设定定位程序存储器的大小,文件存储器的个数,电池状态以及和子任务相关的项目。

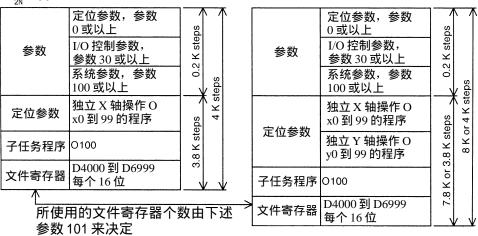

参数 100:存储器大小 设定程序存储器的大小。

表 4.55: 存储器大小

FX _{2N} -10GM	FX _{2N} -20GM
设定= "1": 3.8K 步	设定= "0": 7.8K 步
及是= 1: 3.0K 少	设定= "1": 3.8K 步

程序存储器包括如下部分。

FX_{2N}-10GM

参数 101: 文件寄存器

设置文件寄存器使用的点数。一个点需要程序存储器的一步。以D4000开始的序列号作为文件寄存器号来说是有效的。

表 4.56: 文件寄存器

FX _{2N} -10GM	FX _{2N} -20GM
设置: 0 到 3000 初始值: 0	
D4000 到 D6999	

参数 102: 电池状态

设定当 FX_2 - 20GM 中的 FX_{2NC} - 32BL 电池的电压变低时,是否前面板上的 LED 点亮并发出报警信号。

(FX_{2N}-10GM 中没有内置电池。)

表 4.57: 电池状态

FX _{2N} -10GM	FX _{2N} -20GM			
	设置	LED	GM 输出	M9127
_	0	开	无输出	关
	1	关	无输出	开
	2	开	参数 103 设为 ON 时的输出设置	关

参数 103: 电池状态输出号

当参数 102 设为 "2"时,设置 FX_{2N}-20GM 中的输出号。

表 4.58: 电池状态输出号

FX _{2N} -10GM	FX _{2N} -20GM
	设置=0 到 67 的范围内的输出继电器(Y)号
_	初始值=0

参数 104: 子任务开始 设置子任务开始命令计时。

表 4.59: 子任务开始

2011001 3 12/3/1/12			
FX _{2N} -10GM	FX _{2N} -20GM		
设置="0":当模式从手动(MANU)转为自动(AUTO)(初始值)时,开始一个子任务。		
设置="1": 当通过参数 105 设定的输入变为 ON 时,	开始一个子任务。		
设置="2": 当模式从 MANU 转为 AUTO 或通过参数 105	│设置="2": 当模式从 MANU 转为 AUTO 或通过参数 105 设定的输入变为 ON 时,开始一个子任务。│		

参数 105: 子任务开始输入号

当参数 104 被设为"1"或"2"时,设定子任务开始输入号。

表 4.60: 子任务开始输入号

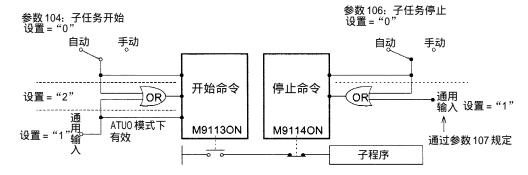
FX _{2N} -10GM	FX _{2N} -20GM
X0 到 X3,X375 到 X377	X0 到 X67,X372 到 X377

参数 106: 子任务停止

设定子任务停止命令计时。

表 4.61: 子任务停止

FX _{2N} -10GM	FX _{2N} -20GM	
设置= "0": 当模式从 AUTO 转为 MANU(初始值)时,	停止一个子任务。	
设置="1": 当通过参数 107 设定的输入变为 ON 或模式	t从 AUTO 转为 MANU 时,停止一个子任务。	


参数 107: 子任务停止输入号

当参数 106 被设为"1"时,设定子任务停止输入号。

表 4.62: 子任务停止输入号

FX _{2N} -10GM	FX _{2N} -20GM	
X0 到 X3,X375 到 X377	X0 到 X67,X372 到 X377	

子任务开始 / 停止配置图

参数 108: 子任务错误

设定当子任务中发生错误时,是否定位单元输出一个错误。

表 4.63: 子任务错误

FX _{2N} -10GM	FX _{2N} -20GM
设置= "0": 当错误发生时,不从定	位单元输出(初始值)。
设置="1": 当错误发生时,从定位	单元输出。

参数 109: 子任务错误输出

当参数 108 设为"1"时,设定输出设备号。

表 4.64: 子任务错误输出

FX _{2N} -10GM	FX _{2N} -20GM
Y0 到 Y5	Y0 到 Y67

当在子任务中发生错误时,M9129 变为 ON。错误能通过使 M9115 变为 ON 来清除。

参数 110: 子任务单步 / 循环操作

设定子任务的操作模式(单步或循环)。

单步:每当开始输入变为 ON 时,执行一行程序。

(当模式从"MANU"切换为"AUTO"时,定位单元等待m 102 (END)。通过第一个开始输入,机器读程序号。通过第二个开始输入,机器执行第一条命令。)

循环: 当开始输入变为 ON 时,执行程序到结束(通过"m102"标记),然后自动停止执行。

连续的循环操作可通过使用无条件跳转指令跳到子任务程序标题处来执行。

表 4.65: 子任务单步 / 循环操作

D 2 1222 1 2 . MA. 13/61	•	
FX _{2N} -10GM	FX _{2N} -20GM	
设置= "0": 不使用通用输入(初始	设置)。	
当在程序中设置 M9112	时,进行单步操作,而当在程序中复位 M9112 时,进行循环操作	
设置="1":使用通用输入。		
通过指定的输入或 M91	12,在单步操作和循环操作之间切换。	

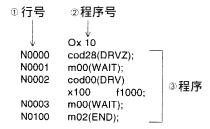
参数 111: 子任务单步 / 循环操作输入

当参数 110 被设为"1"时,键入输入设备号。

当被此参数设定的输入设备变为ON时,进行单步操作。

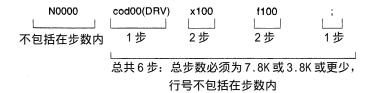
表 4.66: 子任务单步 / 循环操作输入

FX _{2N} -10GM	FX _{2N} -20GM
X0 到 X3, X375 到 X377	X0 到 X67,X372 到 X377

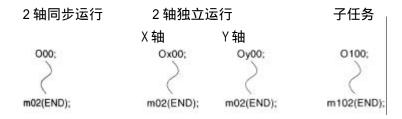

通过停止输入(参数107),专用辅助继电器停止命令(M9114)或切换模式从ATU0到 MANU进行的自动操作期间,定位控制器可被停止。在每种情况下,程序跳转到END指令。

参数4

5. 程序格式


5.1 定位程序

定位程序表达如下:


① 行号

- 每一条指令都指派了行号(从N0到N9999),这样就能容易地把指令字隔离开来。首行号从外部单元输入,然后,每次输入分隔符(;)时,下一个行号就会自动赋给下一条指令。
 通过使用行号来读入指令。
- 任何四位或以下的数字都可以用作首行号,相同的行号可以分配给程序号(参见下页)不一样的其他程序,首行号不一定必须为"N0000"。
- 程序的容量是由步数控制的。每一行使用的步数根据指令字的不同而变化, 行号不包括在步数内。

② 程序号

- 程序号被赋给每一个定位程序,操作目的不同的程序所分配的程序号也不相同。
- 程序号上附有符号"0"。程序号的格式分成2轴同步操作格式(用于FX2N-20GM)、2轴独立操作格式(当用在FX2N-10GM上时,为1轴操作)和子任务格式。

在 FX2N-10GM 中,只能给 X 轴和子任务分配程序号。

■ 每个程序的末尾必须有 END 指令 (对于 2 轴同步操作、X 轴运行和 Y 轴运行是 "m20",对子任务是 "m102")

- 可以按如下方式使用程序号00到99(共100个)。("0100"仅用于子任务)
- 000到 099 0x00到 0x99 0y00到 0y99 0100
- 在 FX2N-20GM 中,不能混合使用 2 轴同步运行程序和 2 轴独立运行程序, 只能使用两者中的一种。
- 如果同时存在两种类型的程序,则会出现程序错误(错误码: 3010)。
- 根据参数30(程序号指定方法)的设定值不同,可以通过一个数字开关或可编程序控制器来指定要执行的程序号。

③ 程序

■ 当输入 START 时,指定程序号所代表的那个程序就从头开始一步一步执行。

指定程序号

0x20,编号

N0000 cod28(DRVZ); N0001 cod00(DRV)

X1000 f2000;

•

N0002 cod04(TMR)

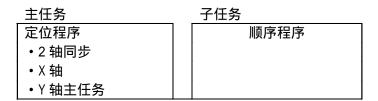
K100;

m02(END);

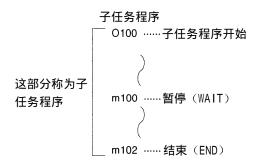
N0003

根据程序编制好的顺序执行。

当一条指令执行结束后,接着执行下一行指令。例如:如上例左边所示的"N0001",当X轴位移值达到"1000"时,继续执行下一行指令。在N0002行,当定时器到达超时时间后,继续执行下一行指令。


5.2 子任务程序

这一节解释了子任务,子任务主要用来处理可编程序控制器的程序。


主任务和子任务

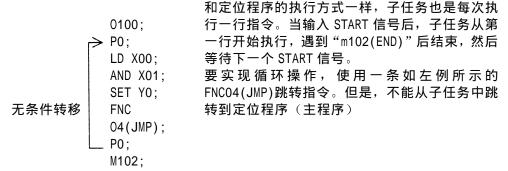
主任务是一个由 0、0x、0y 表示的定位程序,其任务是在 2 轴同步模式和 2 轴独立模式下执行定位操作(在 FX2N-10GM 中,只能使用 0x)
 子任务是一个主要由顺序指令组成的程序,它不执行定位控制。

• 主程序有两个以上,可以用参数 30 (程序编号指定)来选择要执行的程序。 子任务只能创建一个,选定的主任务和子任务同步执行。

子任务规范

指定子任务

任何一个子任务的程序号都是 0100,该程序号必须包含在程序的第一行中。在程序的最后添加 "m102(END)",用 "m100(WAIT)" 暂停程序的执行。"m102"和 "m100" 是固定用法。


子任务程序位置

子任务可以在定位单元程序区(第0步到第3799步或第0步到第7799步)的任何位置创建。为了容易识别,建议在定位程序的后面创建子任务。

子任务开始 / 停止

子任务的开始、停止和单步操作等是由参数设定的(参考第4.3.3.节)。关于特殊辅助继电器和用于子任务的特殊数据寄存器,请参考第6.2节。

子任务的执行

在子任务内部,所有顺序指令、应用指令(在第5章介绍)和下列 cod 指令有效。

 Cod 04(TIM)
 稳定时间

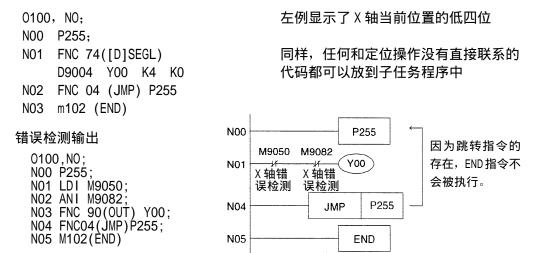
 Cod 73(MOVC)
 位移补偿

 Cod 74(CNTC)
 中点补偿

 Cod 75(RADC)
 半径补偿

 Cod 76(CANC)
 补偿取消

 Cod 92(SET)
 改变当前位置


不能使用 m 码输出,只有 m100(WAIT)和 m102(END)才是合法的指令。

子任务的执行速度大约为1到3毫秒/每行。如果子任务需要重复执行,建议把行数限制在100以内,以免运行时间太长。

程序示例

下面是两个子任务程序的例子。注意,如果一个过程在定位程序和除了定位控制以外的其他控制中执行需要较长时间,那么该过程最好由子任务来处理。

取得数字开关数据

当检测到 X 轴或 Y 轴的错误时,上述程序会关闭正常输出 Y00。

5. 3 指令清单和执行时间

5.3.1 指令清单

表5.1: 指令清单

说明	FX2N-	FX2N- 20GM
ウムセム		
	,	,
		√ ,
		√ ,
		√
		√
		√
		√
		√
		√
		√
		√
以 1-步速度中断停止	√	√
以 2-步速度中断停止	√	√
移动数量修正	√	√
中心位置修正	×	√
半径修正	×	√
取消修正	√	√
指定绝对地址	√	√
指定地址增量	√	√
设定当前值	√	√
基本顺序指令	ll.	1
开始算术运算(a-接触)	√	√
开始算术运算(b-接触)	√	√
串联连接(a-接触)	√	√
串联连接(b-接触)	√	√
并联连接(a-接触)	√	√
并联连接(b-接触)	√	√
	√	√
	√ ×	√
	√ ×	√
	· √	· √
	<i>√</i>	· √
	定位指令 高速定位 线性插补定位 圆弧插补定位(顺时针) 圆弧插补定位(逆时针) 稳定时间(暂停时间) 伺服结束检查 返回机械零点位置 设置电气零点位置 返回到电气零点位置 中断停止(忽略剩下距离) 以1-步速度中断停止 以2-步速度中断停止 以2-步速度中断停止 据定地址增量 设定当前值 基本顺序指令 开始算术运算(a-接触) 开始算术运算(b-接触) 串联连接(a-接触)	Red

表5.1: 指令清单

衣5.1: 拍令消导	<u>-</u>		,	
指令	说明	FX2N-	FX2N-	
1日 구	ν φι _τ η		20GM	
FNC00 CJ	条件转移	√	√	
FNC01 CJN	否定条件转移	√	√	
FNC02 CALL	子程序调用	√	√	
FNC03 RET	子程序返回	√	√	
FNC04 JMP	无条件转移	√	√	
FNC05 BRET	返回母线	1	√	
FNC08 RPT	循环开始	√	√	
FNC09 RPE	循环结束	1	√	
FNC10 CMP	比较	√	√	
FNC11 ZCP	区域比较	√	√	
FNC12 MOV	传送	√	√	
FNC13 MMOV	带符号扩展的放大传送	√	√	
FNC14 RMOV	带符号锁定的缩小传送	√	√	
FNC18 BCD	二进制转换为二-编码十进制	√	√	
FNC19 BIN	二-编码十进制转换为二进制	√	√	
FNC20 ADD	二进制加	√	√	
FNC21 SUB	二进制减	√	√	
FNC22 MUL	二进制乘	√	√	
FNC23 DIV	二进制除	√	√	
FNC24 INC	二进制增量	√	√	
FNC25 DEC	二进制减量	√	√	
FNC26 WAND	逻辑乘 (AND)	√	√	
FNC27 WOR	逻辑和(OR)	√	√	
FNC28 WXOR	异或	√	√	
FNC29 NEG	求补	√	√	
FNC72 EXT	分时读取数字开关	√	√	
FNC74 SEGL	带锁存的7段显示	√	√	
FNC90 OUT	输出	√	√	
FNC92 XAB	X 轴绝对位置检测	√	√	
FNC93 YAB	Y 轴绝对位置检测	√	√	

5.3.2 指令执行时间和启动时间

指令执行时间

基本指令

表 5.2: 基本指令

D(0 1	_ , , , ,	
	10 GM	20GM
LD	0.4	1.0
LDI	0.4	1.0
AND	0.4	1.0
ANI	0.4	1.0
ANB	0.4	1.0

[单位:毫秒]

	10 GM	20GM
OR	0.4	1.0
ORI	0.4	1.0
ORB	0.4	1.0
SET	0.4	1.0
RST	0.4	1.0
NOP	0.3	0.8

顺序指令

表5.3: 顺序指令

	10 GM	20GM
FNC00(CJ)	0.7	2.0
FNC01(CJN)	0.4	1.0
FNC02(CALL)	0.7	2.0
FNC03(RET)	0.4	1.0
FNCO4(JMP)	0.7	2.0
FNC05(BRET)	0.4	1.0
FNC08(RPT)	0.5	1.3
FNC09(RPE)	0.6	1.7
FNC10(CMP)	0.8	1.7
DFNC10	0.8	1.7
FNC11(ZCP)	0.9	1.9
DFNC11	0.9	1.9
FNC12(MOV)	0.7	1.8
DFNC12	0.7	1.8
FNC13(MMOV)	0.7	1.6
FNC14(RMOV)	0.7	1.6
FNC18(BCD)	0.7	1.6
DFNC18	0.8	1.7
FNC19(BIN)	0.8	1.7
DFNC19	0.9	1.9

	10 GM	20GM
FNC20(ADD)	0.6	1.6
DFNC20	0.6	1.6
FNC21(SUB)	0.6	1.6
DFNC21	0.6	1.6
FNC22(MUL)	0.6	1.6
DFNC22	0.7	1.9
FNC23(DIV)	0.7	1.7
DFNC23	1.6	3.7
FNC24(INC)	0.5	1.5
DFNC24	0.5	1.5
FNC25(DEC)	0.5	1.5
DFNC25	0.5	1.5
FNC26(WANT)	0.8	2.3
DFNC26	0.8	2.3
FNC27(WOR)	0.8	2.3
DFNC27	0.8	2.3
FNC28(WXOR)	0.8	2.3
DFNC28	0.8	2.3
FNC29(NEG)	0.4	1.5
DFNC29	0.4	1.5
FNC72(EXT)	82.5	84.6
FNC74(SEGL)	2.5	2.7
FNC90(OUT)	0.4	1.1

定位指令(下面所述的"启动时间"中描述了产生脉冲的指令)

表 5.4: 定位指令

	FX2N-	FX2N-10GM		I-20GM
	电机系统	机械系统	电机系统	机械系统
Cod29(SETR)	1.0	1.9	1.8	1.8
Cod73(MOVC)	0.5	0.5	1.8	1.8
Cod74(CNTC)			1.8	1.8
Cod75(RADC)			1.8	1.8
Cod76(CANC)	0.5	0.5	1.8	1.8
Cod90(ABS)	0.5	0.5	1.8	1.8
Cod91(INC)	0.5	0.5	1.8	1.8
Cod92(SET)	0.6	2.3	2.4	9.0

启动时间

从输入开始信号到输出一个脉冲所需时间(包括了输入选通开关所需的3毫秒) 表5.5: 启动时间

		FX2N-10GN	И		FX2N-20GM			
	电机系统	机械系统	第一次		电机系统	机械系统	第一次	
Cod00(X)	13.0	17.0	+3.0	*1	20.0	30.0	+10.0	
Cod00(Y)					30.0	50.0	+20.0	
Cod01	13.0	17.0	+3.0		140.0	150.0	+10.0	*2
Cod02/cod03	_	_			155.0	165.0	+10.0	*3
Cod28	12.0	18.0	+4.0		30.0	40.0	+0	
Cod30	12.0	16.0	+4.0		25.0	38.0	+20.0	
Cod31	13.0	18.0	+3.0		140.0	150.0	+10.0	*4
Cod71	12.0	15.0	+5.0		20.0	30.0	+10.0	
Cod72	22.0	27.0	+4.0		25.0	35.0	+15.0	
Cod04(TIM)	0.5	0.5			1.8	1.8		
m 以后	3.5	3.5		*5	1.5	1.5		*5
更新当前值	0.6	1.4			1.2	2.8		

- *1 循环时: 5.0/8.0
 - 当仅仅改变地址时(速度不变): 8.0/11.0 在以多步速度操作期间: 24.0/28.0
- *2 当 M9015 开启时: 120+30N(N= 持续通过次数)
- *3 当 M9015 开启时: 120+50N(N= 持续通过次数)
- *4 当 M9015 开启时: 120+30N(N= 持续通过次数)
- *5 当对外输出 m 码时 (包含了 2 毫秒的晶体管输出响应时间)
- 上述的启动时间指的是由"开始输入"信号所启动的操作的运行时间 1 如果操作是由PLC或子任务的TO指令启动的,则上表中的数值应该减去输入选通 开关的时间(3毫秒),再加上指令启动时间(TO指令: 94.1+556.7n微秒,[D]TO指 令: 96.3+1098.6n微秒,"n"=传送点数量)。

5.4 定位控制指令的通用规则

本节解释了 cod 指令和 m 代码的命令事件

5.4.1 m代码指令格式

m(代)码指令用来驱动各种协助定位操作的辅助设备(如夹盘、钻孔机等)。

m码: MOO 到 M99 (100 点) (X 和 Y 轴各有 100 个 m 码指令)

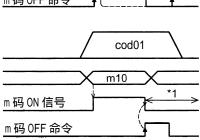
m 码指令用"m"表示,以便和代表辅助继电器的 M 相区别。

m 码驱动方式

在 AFTER 模式下,仅执行 m 码指令。在 WITH 模式下,m 码指令和其它指令同时执行。

AFTER 模式:

NO. cod01 (LIN) X400Y300F200;


m10: 单独起一行书写 m 码。 N1

N2 cod04 (TIM) K5; 50 毫秒

m码ON信号 N3m11: 接下来, 其他辅助设备立即驱动。 m码OFF命令

WITH 模式

cod01(LIN)X400 Y300 f200 当一个 m 码作为最后一个操作数加到任何 一种类型的定位控制指令中时,就按如下 所示建立了WITH 模式。在指令结束后才 执行下一行指令,并且m码OFF信号打开。

m10

cod01: 定位结束

m11

*1: 延长关闭时间,使它长于可编程 序控制器的扫描时间

◆ 在以上的任一情况下,当 m 码驱动时, m 码 ON 信号就打开了,并且 m 码编号被存入 特殊的 Ds(寄存器)中。m 码 ON 信号始终保持 ON 状态,直到 m 码 OFF 信号打开。

表 5.6: m 码的分配

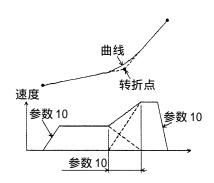
	X 轴		Y轴	
	特殊 M/D	缓冲存储器	特殊 M/D	缓冲存储器
m 码 ON 信号	M9051	#23(b3)	M9083	#25(b3)
m 码 OFF 命令	M9003	#20(b3)	M9019	#21(b3)
m 码编号	D9003	#9003	D9013	#9013

- 在FX2N-10GM中,只有X轴可用。
- ← 在FX2N-20GM或FX2N-10GM中,可以通过缓冲存储器使用FX2N/FX2NC系列可编程 序控制器来传输 m 码。
- 可以用参数36到38把和m码有关的信号输出到外部单元(具体细节请参考第4.3.1 节)
- 在连续使用 m 码时,应该延长 m 码 ON 信号的关闭时间,使它比可编程序控制器的 扫描时间更长。

5.4.2 连续路径 (FX2N-20GM)

连续路径表示连续地执行插补控制指令,如 cod01,cod02,cod03。

连续路径示例


cod 01	线性插补	(LIN)
cod 02	圆弧插补	(CW)
cod 01	线性插补	(LIN)
cod 03	线性插补	(CCW)

当执行除可应用指令(cod01,cod02和cod03)以外的其他任何指令时,连续路径操作将不会执行。机器会暂停运行,然后继续执行下一个操作。 在以下情况下机器会停止运行

- 执行其它 cod 指令时。
- 执行顺序指令时。
- 在 AFTER 模式下执行 m 码时。
- 执行 cod09(CHK)伺服结束检查指令时(也就是说,当参数 21 的值在 1 和 5000 之间时)

连续路径操作

- 不停地执行连续插补指令,转 折点就变成了光滑曲线。
 曲率半径根据插补时间常数变化 (设为参数 10)。时间常数越大, 曲率半径就越大。
- 为了绘制一条精确的轨迹,应使用 圆弧插补指令创建程序。
- 当各条插补指令间的执行速度不同时,使用当前减速度和接下去要使用的加速度的合成速度。

连续路径数量

连续路径数量的多少取决于特殊辅助继电器 M9015 的操作。

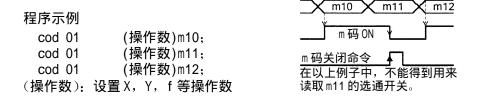
当 M9015 关闭时

在执行一个插补操作的时,下一个过程的插补控制的准备工作也同时进行。因此,对 于连续路径的数量没有什么限制。但是,如果存在如下所示的短时间路径时,就不能 够提前读入下一个过程,机器在这条短时间路径下可能会暂停操作。

- 路径的移动时间小于等于50毫秒。
- 路径的移动时间小于等于插补时间常量。

当 M9015 开启时

在连续路径操作开始之前,将预先执行最大30条连续路径的插补控制的准备工作。因此,不论存在什么样的短时间路径,机器都不会停止操作。但是,在执行第31条路径时,机器会暂停操作,然后开始下一条连续路径。


当 RPT 和 RPE 之间的连续路径数量小于等于 30 时,该循环操作也是连续执行的。对于大多数操作,M9015 通常都设为关闭。

在 FX2N-10GM 中没有定义 M9015 标志。在这种情况下,实际操作类似于 M9015 关闭时的操作。

在连续路径期间的m码操作

当在连续路径插补指令中指定了WITH模式的m码时,即使此时并没有输入m码关闭命令,也将执行一系列连续操作。在这一系列操作结束后或者输入了m码关闭命令后,机器将继续执行下一个操作。

当按下列程序所示,在各条插补驱动指令中指定了不同的m码时,m码输出将一条一条地切换着进行。注意,如果在切换点以前没有给出m码关闭命令的话,将不能读取新的m码。

其它注意事项和说明

插补控制的增量位移。

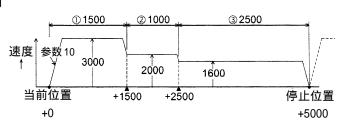
- 由一个插补控制指令引起的增量位移在转换为脉冲时被限制为28位。
- 例如,假定每个脉冲的位移量为1微米的,则它对应的增量位移为268米。

步进电机和连续路径

当使用步进电机来执行连续路径控制时,由于电机特性各不相同,电机有可能工作失常。

插补控制和脉冲输出格式

在插补控制中,参数11(脉冲输出格式)必须设为"0"。


圆弧插补的说明

- 在圆弧插补期间,半径是恒定的,脉冲被分配到 X 轴和 Y 轴。 因此,如果在 X 轴和 Y 轴上脉冲率和进给率(设定到参数 1 和 2 中)的比率不相等,就会得到一个变形的圆弧。在这种情况下,应调节伺服放大器的电子齿轮,使 X 轴和 Y 轴的比率相等。
- 当圆弧很小并且从起点到终点的移动时间小于加速/减速时间常量(设为参数10)时,就不可能执行圆弧插补操作。在这种情况下,从起点到终点的移动轨迹就变成了线性的,而不是圆弧的。

5.4.3 使用连续路径进行多步操作(FX2N-10GM)

虽然 cod01(LIN)是一个线性插补指令,它也可以通过在 FX2N-10GM 中指定连续路 径来进行多步操作。

- 根据以下操作示例创 建程序。
- 可以通过绝对驱动 方法(ABS)或增量 驱动方法(INC)指 定位移。但是,如果 在连续路径期间改 变驱动方法,机器 会暂停运行。

增量驱动示例 0x 00,N0 N0 cod91(INC) N1 cod01(LIN)—	程序号 0 增量驱动方法	绝对驱动示例 Ox 00,N0 N0 cod90(ABS) N1 cod01(LIN)	_	程序号 0 绝对驱动方法
X1500		X1500		
F3000		F3000		
N2 cod01(LIN)		N2 cod01(LIN)		连续路径部分
X1000	连续路径部分	X2500		
F2000		F2000		
N3 cod01(LIN)		N3 cod01(LIN)		
X2500		X5000		
F1600		F1600		
N4 mO2(END)	结束命令	N4 mO2(END)		结束命令

- 在多步操作中,下一个过程的准备工作和当前过程同时执行。因此,当从当前操作 速度转变到下一步的速度的可用的距离太小时,或者移动时间太短时,机器不可能 连续操作,而会短暂停顿。
- 对多步操作的步数(连续路径数量)没有任何限制,使用m码的操作的执行方式和 上页所说明的连续路径的操作相同。
 - •在 FX2N-20GM 中,通过指定一个要操作的轴(X 轴或者 Y 轴)也可以进行多步操作。 (在这种情况下,因为需要插补控制,只能进行同步 2 轴操作。未指定的轴不会移 动。)

在以多步速度运行的操作期间的 m 码控制,多步速度由 M9160 决定(FX2N-10GM)使用 m 码的操作和上页所述的连续通道的操作相同。

但是,如果驱动了特殊继电器 M9160,操作就不相同了。 概述:

在 FX2N-10GM 中的特殊辅助继电器 M9160 开启的情况下以多步速度执行操作时,m 码将实现以下操作。

- 当 m 码关闭命令未给出时,机器不会继续以多步速度操作,而是等待 m 码关闭命令。
- 当给出 m 码关闭命令后,机器将继续以多步速度操作。 但是,当当前操作位于减速范围内时,机器将定位出当前指令的目标地址,然后 转移到下一条指令。

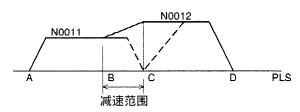
使用示例1 (M9160 开启)

下面是一个程序示例操作

N0000 0x0, N0;

٠

N0010 SET M9160


N0011 cod01 xC f100,000 m10; N0012 cod01 xD f200,000;

N0013 RST M9160:

٠

N0020 m02(END)

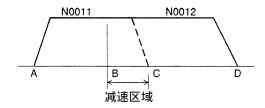
执行以上的程序后,机器的运行情况如下。

- 1) 在 A 点和 B 点之间的这部分区域中给出 m 码关闭命令时,速度将变成下一步的速度。
- 2) 如果在A点和C点之间的这部分区域中未给出m码关闭命令,机器将在C点停止, 等待m码关闭命令。
 - 等给出了m码关闭命令后,机器移动到D点。
- 3) 在 B 点和 C 点之间的这部分区域中给出 m 码关闭命令时,机器在 C 点停止,然后立即移动到 D 点

使用示例 2 (M9160 开启)

N0000 0x0, N0;

•

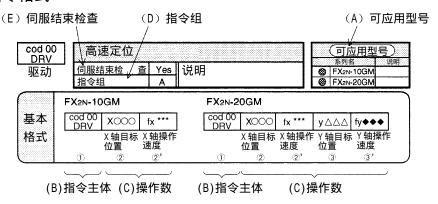

N0010 SET M9160

N0011 cod01 xC f100,000 m10; N0012 cod01 xD f200,000;

N0013 RST M9160;

•

N0020 m02(END)



使用示例2的操作和使用示例1相同。

- 1) 在 A 点和 B 点之间的这部分区域中给出 m 码关闭命令时,速度将变成下一步的速度。
- 2) 如果在A点和C点之间的这部分区域中未给出m码关闭命令,机器在点C停止,等待m码关闭命令。
 - 等给出了m码关闭命令后,机器移动到D点。
- 3) 在 B 点和 C 点之间的这部分区域中给出 m 码关闭命令时,机器在 C 点停止,然后立即移动到 D 点
- 注意:记住,在以多步速度执行的操作中(cod01),移动量和加/减速时间(参数10)这两者的情况决定了机器是否能够连续操作。

如果从当前操作速度变成下一步的速度所需要的移动脉冲数量不能保证,或者移动时间太短,机器将不能连续操作。

5.5 指令格式

(A) 可应用型号

列出了在其中可以使用所述指令的型号。

型号分为 FX2N-10GM 和 FX2N-20GM 两类,可应用的组以符号"●"标记。

(B) 指令主体

定位控制指令由指令主体和操作数(在下表中列出)组成。(有的指令不包含任何操作数)

指令主体由指令字(如 DRV、LIN、CW 等)和代码编号(cod 编号)组成。 指令可以通过指定指令字或代码编号写入外围单元或从外围单元读取。

(C) 操作数

不同类型的指令使用不同类型的操作数,如位移、速度等。按规定顺序选择所需操作数。下表列出了可用的操作数。

表 5.7: 操作数类型

操作数类型	FX2N-10GM	FX2N-20GM	単位	间接指 定	省略操作数
x: X 轴坐标 (位移), 增量/绝对	√	√	由参数设定	可能使	省略操作数的那个
Y: Y 轴坐标 (位移),增量/绝对	_	√		用数据	轴保持当前的状态,
				寄存器	并且不会移动
i:X轴坐标(圆弧中心),增量	_	√		(D)	如果省略,增量位移
j: Y轴坐标 (圆弧中心),增量	-				被看作"0"
r: 圆弧半径	-	√			这个操作数不能省
					略
f: 矢量速度或外围速度	√	√			上次使用的"f"值
					生效
k: 定时器常量	√	√	10 毫秒		这个操作数不能省
					略
m: WITH 模式下的 m 码	√	√	_	不能	这个操作数可以省
					略(没有m码输出)

操作数的单位

操作数所指定的值的单位由参数决定。

• 位移(x、y、i、j、r)

根据参数 0 的设定值(单位体系)决定是电机体系(PLS)还是机械体系(毫米、 英寸、deg)有效。

设定值根据参数3(最小命令单元)所设定的值进行缩放。

速度(f)

设定值必须小于等于参数4的设定值(最大速度)。

FX2N-20GM: 小于等于 200kHz (对于线性 / 圆弧插补, 小于等于 100kHz)

FX2N-10GM: 小干等于 200kHz

间接指定

间接指定的意思是通过指定数据寄存器(包括文件寄存器和变址寄存器)来间接写入设定值的方法,而不是直接把设定值写到操作数中。

直接指定

cod00	x1000 ↑ 位移 =1000	f2000 ↑ 速度 =2000	设定值直接写入
间接指定 cod00	xD10 ↑ 位移= D10	fD20 ↑ 速度= D20	设定值由数据寄存器的内容 决定

当设定值超出 16 位时,可以象指定"xDD10"一样指定。通过这样指定可以处理 32 位数据(D11、D10)。

用于间接指定的数据寄存器的编号可以用变址寄存器 V 和 Z 修改,通过修改可以选择数据。

例: 当 (V2) =10 时, "D20V2" 表示 "D30"。当 D30 的内容为 "500" 时, "xD20V2" 和 "xD30" 相等 (即 "x500")。

总共有 16 个变址寄存器可用,它们是 V0 到 V7 和 Z0 到 Z7。

V0 到 V7: 16 位寄存器

Z0 到 Z7: 32 位寄存器

当设定值小于等于 16 位时或者当一条顺序指令为 16 位时,使用 V0 到 V7。当设定值超过 16 位时或者当一条顺序指令为 32 位时,使用 Z0 到 Z7。

省略操作数

在必须指定 r(圆弧半径)或 k(定时器常量)的指令(CW, CCW, TIM)中,不能省略操作数。

如果在 cod00 (DRV) 指令中省略了 fX (X 轴操作速度) 或 fY (Y 轴操作速度),则相应的那根轴将以参数 4 (最大速度) 指定的最大速度进行操作。

(D) 指令组

本手册中,指令被分成四组 (A 到 D)。

A 组

当连续使用相同的指令(相同的代码编号)时,可以省略代码编号,并且只需使用必要的操作数。

指令名: cod00(DRV)、cod01(LIN)、cod02(CW)、cod03(CCW)、cod31(INT)

例: N00 cod00(DRV) x100

N01 x200; 由 cod00 指令执行。

B组

不能省略代码编号。此组中的指令只在指定了该指令的行号上有效。

指令名: cod04(TMR)、cod09(CHK)、cod28(DRVZ)、cod29(SETR)、cod30 (DRBR)、cod71(SINT)、cod72(DINT)、cod92(SET)

C组

此组中的指令一旦执行就一直保持有效,直到组中的另一条指令被执行。

指令名: cod73(MOVC)、cod74(CNTC)、cod75(RADC)、cod76(CANC)

例子: N200 cod73(MOVC) X10; X 轴位移按 "+10" 校正,

在这部分区域中, X 轴位移都按"+10"校正。

N300 cod73(MOVC) X20; X 轴位移按 "+20" 校正,

D组

此组中的指令一旦执行就一直保持有效,直到组中的另一条指令被执行。

指令名: cod90(ABS)、cod91(INC)

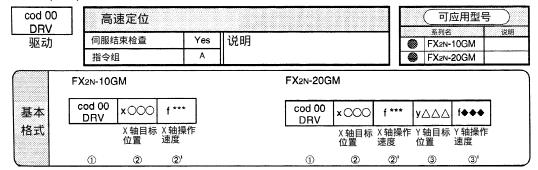
例子: N300 cod91(INC); 位移由增量驱动方式表示

增量地址在此区域中表示。

N400 cod92(ABS); 位移由绝对驱动方式表示。

(B) 伺服结束检查

当一条用于伺服结束检查的指令执行时,在驱动结束后将自动执行伺服结束 检查。系统确认伺服放大器中的偏差脉冲小于指定数量(由伺服放大器参数 设定),然后继续执行下一个操作。


如果伺服结束信号在参数 21(定位结束信号错误估计时间)设定的时间内没有从伺服放大器传送到定位单元,就会产生一个外部错误(错误码: 4002=伺服结束错误),机器会停止操作。当参数 21 设为 "0"时,即使被执行的指令指定了伺服结束检查为 "是",伺服结束检查也不会执行,

以后将要说明的 cod09 (CHK) 指令可以用来进行伺服结束检查。

5.6 驱动控制指令

这一节解释驱动控制指令,这些指令是进行定位控制的基础。

5.6.1 cod00(DRV): 高速定位

① 驱动

这条指令根据独立的X、Y轴设定值来指定到目标坐标的位移 (在FX2N-10GM中,只有一个轴)。各轴的最大速度和加速度/减速度由参数设定。

在 FX2N-20GM 中使用单轴驱动时,只需指定 X 轴或 Y 轴的目标位置。

② X 轴目标位置

目标位置的单位由参数3(最小命令单位)设定。位置是增量(离当前位置的距离)的还是绝对(离零点的距离)的由 cod91 (INC)或者 cod90 (ABS)指令规定。

表 5.8: 指定方法

指定方法	设定值范围
直接指定	x0 到 x±999.999
间接指定(16 位)	xD0 到 xD6999*1
间接指定(32 位)	xDD0 到 xDD6998*1

^{*1:} 在 FX2N-10GM 中, D2000 到 D3999 不可用。

③ Y轴目标位置:和X轴一样。

②'③'操作速度

设定这些操作数是为了使机器以低于最大速度(参数 4 中设定)的速度进行操作。如果未设定这些操作数,机器将以最大速度操作。编程时,只需使用"f"就可以完成 fx 及 fy 的设定。

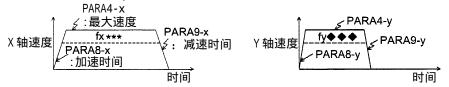


表 5.9: 指定方法

指定方法 设定值范围	
直接指定	f0到f200,000
间接指定(16 位)	fD0 到 fD6999*2
间接指定(32 位)	fDD0 到 fDD6998*2

*2: 在 FX2N-10GM 中, D2000 到 D3999 不可用。

程序示例

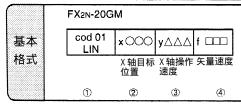
参数 .0: 单位系统。设定值 = "1"

(单位电机系统)

参数 .3: 最小命令单位。

设定值 = "2"(10)

速度: 2000Hz (如果该值等于参数 . 4 的设定值,则不必设) PARA.9 DEB (1000PLS) (1000 10¹ =1000PLS)


cod91(INC); 增量驱动方法 cod00(DRV) x1000

f2000;

5.6.2 cod01(LIN): 线性插补定位

cod 01	线性插补定位,多		(10GM)
线性	伺服结束检查	Yes	说明
	指令组	Α	

	可应用型号	;
	系列名	说明
8	FX2N-10GM	
	FX2N-20GM	

• 在独立 2 轴操作和子任务程序(0x,0y 和 o100)中, 这条指令不可用。

如果在这些程序中使用了该指令,该指令会被忽略。 • 在 FX2N-10GM (OX) 中,这条指令用于多步操作。

① 线性

这条指令同时使用两个轴沿直线路径把机器移动到目标坐标(X,Y)。 使用这条指令时,一定要注意参数23(停止模式)。(参见第4.3.1节)

②③ X 轴 /Y 轴目标位置

目标位置的单位由参数3设定

目标位置是增量的(表示离当前位置的距离)还是绝对的(表示离零点的距离)由 cod91(INC)或 cod90(ABS)设定。

下表显示了X轴的设定值范围。Y轴的设定值范围也是一样的。

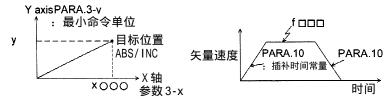


表 5.10: 指定方法

指定方法	设定值范围
直接指定	x0 到 x999,999
间接指定(16 位)	xD0 到 xD6999*1
间接指定(32 位)	xDD0 到 xDD6998*1

^{*1:} 在 FX2N-10GM 中, D2000 到 D3999 不可用。

④ 矢量速度

设定矢量速度的值在下表所示的范围以内。(设定值一定不能超过参数 4 的设定值)

表 5.11 指定方法

指定方法 设定值范围		
直接指定	f0到f100,000*2	
间接指定(16 位)	fD0 到 fD6999*3	
间接指定(32 位)	fDD0 到 fDD6998*3	

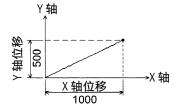
*2: FX2N-10GM: f0到f200,000

*3:在 FX2N-10GM 中,D2000 到 D3999 不可用。

当忽略了矢量速度(f)时,机器按以下速度操作。(该值和参数 4(最大速度)不同)表 5.12: 矢量速度(f)

	10GM	20GM
第一次	200kHz	100kHz
第二次或以后	以前的 f 值	

连续执行插补指令时,就会进行路径操作。而在 FX2N-20GM 中,将会执行多步操作(参考第 5.4.3 节)。


程序示例

cod91(INC); 增量驱动

cod91(LIN)

x1000 y500

f2,000;

5.6.3 cod02(CW), cod03(CCW): 指定中点的圆弧插补

cod 02 CW			指足	定中点	的圆弧插补		可应用型号
cod 03	伺服结	束检查		No	 说明		系列名 说明 FX _{2N} -10GM
CCW	指令组	1		Α			FX _{2N} -20GM
	FX2N-200	SM					
	cod 02 CW	x000	y△△△	i ***			操作和子任务程序))中,这条指令不
基本		X 轴目标 位置	Y 轴目标 位置	X 轴中) 坐标	点 Y 轴中点外围速度 坐标	COX, Oy AHOTOL	77 中,这宗祖文小

X轴中点

(4)

坐标

j ♦♦♦ | f □□□

Y轴中点外围速度

(6)

坐标

(5)

① CW/CCW

这条指令表示绕中点坐标 以外围速度"f"移动到目标位置。 当起点坐标等于终点坐标(目标位 置),或者未指定终点坐标时,移 动轨迹是一个完整的圆。

x 000

X 轴目标 位置

(2)

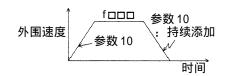
 $y\triangle\triangle\triangle$

Y轴目标 位置

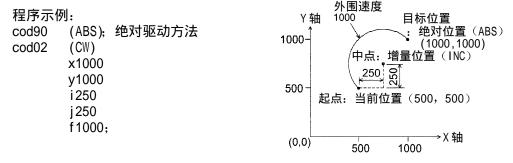
(3)

cod 03

CCW


1

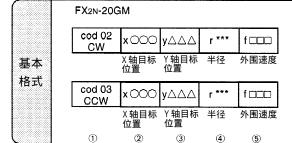
令,该指令会被忽略。


如果在这些程序中使用了该指

- ②③ X/Y 轴目标位置(x,y) 目标位置可以用增量地址或者绝对地 址指定。它的单位和设定值范围与 cod00和 cod01的单位和设定值范围相同。
- ④⑤ X/Y 轴中点坐标(i,j) 中点坐标始终被看作以起点为基准的 增量地址,它的单位和设定值范围与 cod00和 cod01的单位和设定值范围 相同。

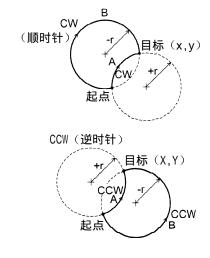
⑥ 外围速度"f"

设定圆弧操作速度。外围速度的加/减速度时间常量(参数10)和单位与 cod00 和 cod01 的相同。

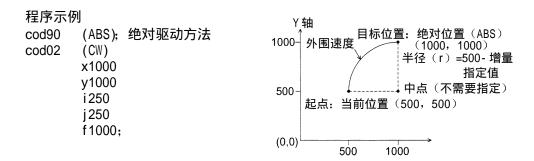


当连续执行插补指令时,就会执行路径操作(参考第5.4.2节)。

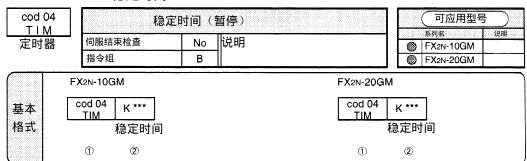
	cod 02 CW	
Γ	cod 03	


	指定中,	点的圆弧插补
伺服结束检查	No	说明
指令组	Α	

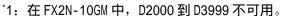
可应用型号			
	系列名	说明	
	FX2N-10GM		
*	FX ₂ N-20GM		

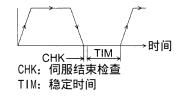

在独立 2 轴操作和子任务程序(0x,0y 和o100)中,这条指令不可用。 如果在这些程序中使用了该指令,该指令 会被忽略。

① CW/CCW (顺时针/逆时针) 这条指令以外围速度"f"把机 器移动到目标位置。 圆弧半径由"r"决定。当"r" 值为正数时,移动轨迹为如右图 所示的的小圆 A。当"r"值为 负数时,移动轨迹为大圆 B。 (半径可能是正,有可能是负) 这条指令不能产生一个真实的圆 轨迹。如果设定值不正确,将出 错(错误码3004)。 当要求路线为真实的圆时,可以 如上页所述那样指定圆的中 点坐标。使用了这条指令后, 定要注意参数 23(停止模式)。 (参考第4.3.1节)

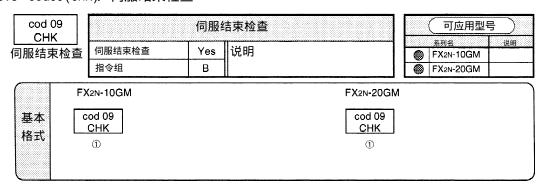

- ②③ X/Y 轴目标位置(X,Y) 目标位置可以用增量地址或绝对地址指定。目标位置的单位和设定值范围与 cod00 和 cod01 的相同。
- ④半径"r" 半径始终被看作是距离中点(不需要设定)的增量地址。半径的单位和设定值范 围与 cod00 和 cod01 的相同。使用这条指令不能够创建产生真实圆轨迹的程序。
- ⑤外围速度"f" 设定圆弧操作速度。加/减速度 时间常量(设为参数10)和 外围速度的单位与cod01的相同。

连续执行插补指令时,就会执行路径操作(参考第5.4.2节)。

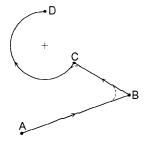

5.6.4 cod04 (TIM): 稳定时间



- ① 定时器 使用这条指令来设定一条指令结束和另一条指令开始之间的等待时间。
- ② 稳定时间(暂停) 增量为10毫秒。"K100"表示1秒的延迟。


表 5.13: 指定方法

指定方法	设定值范围
直接指定	k0 到 k169,535
间接指定(16 位)	DO 到 D6999*1
间接指定(32位)	DDO 到 DD6998*1


5.6.5 cod09(CHK): 伺服结束检查

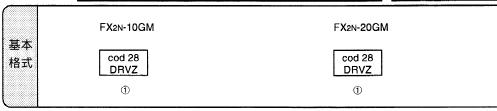
① 检查

通过这条指令,机器在插补操作的结束 点执行伺服结束检查,然后转移到下一 个操作。

当在伺服放大器上累积的脉冲小于等于 指定的数量时,机器根据从伺服放大器 发送到定位单元的定位结束信号(SVEND)

执行伺服结束检查。

当从脉冲输出结束到输入定位结束信号之间的时间超过了参数 21 设定的时间间隔时,定位单元就认为发生定位错误。当连续进行插补操作时,机器执行无停顿操作,转折点连成一条光滑曲线。


如果你想把机器移动到右图所示的目标位置 B和 C,则在程序中的 cod01 和 cod03 指令后面使用 cod09 指令。在装运出厂的时,参数 21 被设置成"0",以使伺服结束检查无效。当你在使用 cod09(CHK)指令时,应正确设定参数 21。

5.6.6 cod28(DRVZ): 返回机械零点

cod 28		
DRVZ		
驱动至零点		

返回机械	季占	
伺服结束检查	Yes	说明
指令组	В	

可应用型号				
	系列名	说明		
	FX2N-10GM			
	FX ₂ N-20GM			

① DRVZ

当这条指令执行时,将会进行机械回零操作(有关机械回零操作的详细内容,请参考第8.2.6节)

当机械零点返回操作结束后,特殊继电器 M9057 (X轴) 和 M9089 (Y轴) 开启 (在 FX2N-10GM 中,只有 M9057 可用)。

一旦在 MANU 或 AUTO 模式下执行了一次机械回零操作后,这些特殊继电器将一直保持开启(当电源关闭后,这些继电器也关闭)

程序示例

以下的程序使用特殊 Ms(继电器),这些 Ms 在左边说明,程序还使用了一个跳转命令以便在机器重启动时跳过零点返回操作。

0x00

一旦回零操作结束,程序就执行跳转指令。

P0; ←

在 FX2N-20GM 中进行同步 2 轴操作时,这条指令同时返回到 X 轴和 Y 轴的零点。要返回到单个轴的零点,请参考以下程序示例。

M9008: 禁止 X 轴的机械零点返回操作。

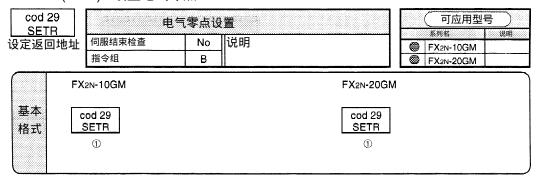
(这些设定值在 FX2N-20GM 第 3 版或 1995 年 5 月及以后发布的手册上有效。)

M9024: 禁止 Y 轴的机械零点返回操作。

程序示例

(首先只返回到 X 轴的零点,然后再返回到 Y 轴的零点。)

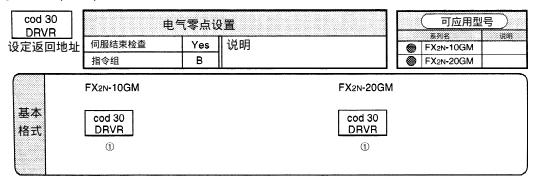
00,N0 (同步 2 轴程序)


SET M9024 ; 禁止 Y 轴的回零操作。

cod 28 (DRVZ) : 只返回到 X 轴的零点。(M9008=0FF, M9024=0N)

RST M9024 ; 允许 Y 轴的回零操作。 SET M9008 ; 禁止 X 轴的回零操作。 cod 28 (DRVZ) ; 只返回到 Y 轴的零点。 RST M9008 ; 允许 X 轴的回零操作。

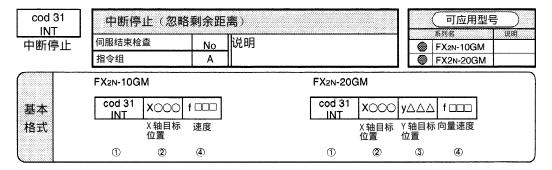
当 M9008 和 M9024 都开启时,即使执行了 cod28,也不会发生任何操作。如果某根轴被禁止回零操作,那么该轴的回零结束标志(M9057,M9089)将不会开启。


5.6.7 cod29(SETR): 设置电气零点

① SETR

这条指令执行时,当前位置(设定到当前值寄存器中)被写入电气零点寄存器。

5.6.8 cod30(DRVR): 电气回零



① DRVR

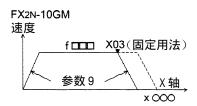
这条指令执行时,机器将会高速返回电气零点(设定在电气零点寄存器中),并 且执行伺服结束检查。

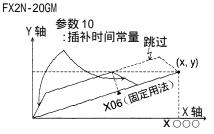
加/减速度时间由参数8和参数9决定,操作速度由参数4(最大速度)决定。

5.6.9 cod31(INT): 中断停止(忽略剩余距离)

(1) INT

使用这条指令,机器在以 1- 步速度(FX2N-10GM)进行定位或线性插补(FX2N-20GM)时可以通过输入中断来使机器减速并停止。


使用这条指令时要注意参数23(停止模式)。


(参考第4.3.1节)

在 FX2N-10GM 中

以速度(f)执行到目标位置的定位。 当中断输入X3(固定用法)开启时, 终止定位操作,然后执行下一条指令。 在FX2N-20GM中

以矢量速度(f)执行至目标坐标 (X,Y) 的线性插补操作。当中断输 入 X06 (固定用法) 开启时,终止定 位操作,机器减速并停止,然后执行下一条指令。这条指令只在同步 2 轴 模式 (000 到 099) 下可用。

②③ X/Y 轴目标位置

该位置可以由增量地址或绝对地址指定。目标位置的单位和设定值范围与cod01的相同。

4) 速度

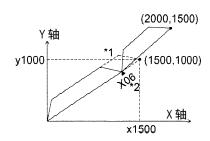
速度的单位和设定指范围与 cod01 的相同。

程序示例 (在 FX2N-20GM 中)

```
cod 31 (INT)

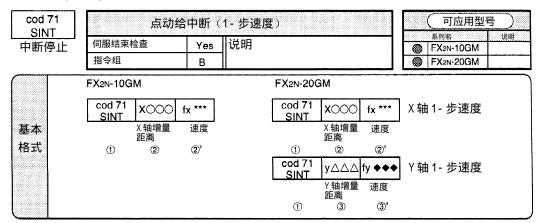
x1500

y1000


f2000;

cod 01 (LIN)*2

x2000


y1500

f2000;
```


- ^{*}1: 当中断输入 X06 开启时,机器减速并停止,然后机器继续执行下一个定位操作, 而带点的行中所表示的剩余距离将被忽略。
- *2: 如果中断输入 X06 没有开启,机器将移动到目标位置。

5.6.10 cod71(SINT): 中断点动给(1-步速度)

① SINT

机器以速度 fx 和 fy 操作,直到中断输入开启。当中断输入开启时,机器速度不变地移动了指定距离后停止。

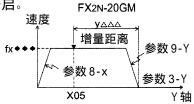
中断输入

X02(X轴):

FX_{2N}-10GM

X04(X轴), X05(Y轴): FX₂

FX_{2N}-20GM


机器不受限制地继续移动,直到中断输入开启。

②③ X/Y 轴增量移动

虽然单位和设定值范围与 cod00(DRV) 的相同,但是所指定的数字总是被看作 增量地址。

②'③'/Y轴速度

速度的单位和设定值范围与 cod00(DRV) 的相同,但是,不能省略设定值。

FX2N-10GM/ FX2N-20GM

X000

增量距离

;: 加速度

X04(在20GM中)

X02(在10GM中)

参数 9-x

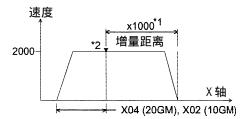
减速度

: 最小命令单位

X轴

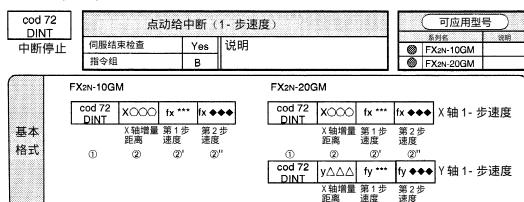
参数 3-x

速度

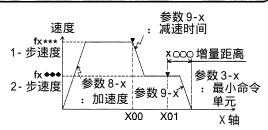

参数8-x

fx***

程序示例


cod90 (ABS); 增量地址 cod71 (SINT) x1000*1

f2000:


- *1:即使在程序中使用的是绝对驱动 方式,在执行了 cod71 后,位移也将被看作是增量地址。
- *2: 当增量位移很小而所指定的速度却很高时,伺服电机将急剧减速,使机器在指定位置停止(如果机器走过了头,位移将会反向进行)。在使用步进电机时要小心,因为它可能工作失常。

5.6.11 cod72(DINT): 中断点动给(2-步速度)

① DINT

机器以第1步速度 fx***或 fy ◆◆◆进行操作,直到中断输入开启。 当速度-变化输入(X00)开启时,操作速度变为第2步速度 fx***或 fy ◆◆◆。当停止输入(X01)开启时,机器执行指定距离的增量位移,然后停止。

3'

3¹¹

(3)

1

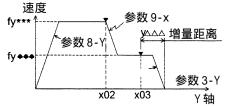
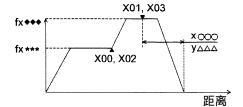



表 5.14:

	速度-变化输入	停止输入
X轴(FX _{2N} -10GM FX _{2N} -20GM)	X00	X01
Y 轴 (FX _{2N} -20GM)	X02	X03

机器无限制地继续操作,直到速度-变化输入和停止输入都开启。

②③ X/Y 轴增量位移 单位和设定值范围与 cod00(DRV)的相同, 但是,位移的设定值始终被看作增量值, 不能省略。

②'②'③'X/Y轴速度

速度的单位和设定值范围与 cod00 (DRV) 的相同(但是,位移和速度的设定值不能省略)。第2步速度可以设得比第1步速度更高(更快),但是,当移动距离很短且位移在参数9设定的减速时间内结束时,机器将立即停止。在这种情况下,步进电机(如果使用了)可能会工作失常。

中断驱动指令

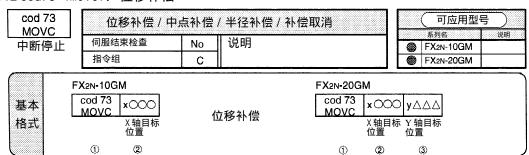

下表所示的输入被指定为中断驱动控制的停止命令和减速命令。

表 5.15: 中断驱动指令

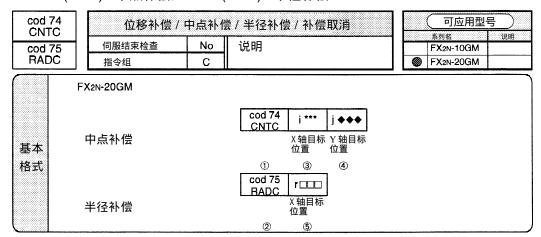
输入	FX2N-10GM	FX2N-20GM
X00	cod 72: X 轴速度-变化输入	cod 72: X 轴速度-变化输入
X01	cod 72: X 轴停止输入	cod 72: X 轴停止输入
X02	cod 71: X 轴	cod 72: Y轴速度-变化输入
X03	cod 31	cod 72: Y 轴停止输入
X04		cod 71: X 轴
X05	_	cod 71: Y轴
X06		cod 31: 同步 2 轴

因为这些输入被看作通用输入,并且可以和手动脉冲发生器一起使用,所以它们可能 还不能使用。(参考第4.4.3 节所述的参数39 (手动脉冲发生器))

5.6.12 cod73 (MOVC): 位移补偿

① MOVC

这条指令结束后,将对位移(目标距离)进行补偿。


23修正值

修正值的取值范围为0到±999,999。当前值地址中包含了修正值。

当下列特殊辅助继电器开启时,机器操作时将忽略在增量驱动(当 cod91 执行时执行)期间 cod73、cod74 和 cod75 设定的修正值。(因为修正值将加到正常转动和反向转动两个方向上,因此,如果在增量驱动中对往复运动进行修正,将发生偏移)

M9163: 对于 X 轴 M9164: 对于 Y 轴

5.6.13 cod74(CNTC): 中点补偿, cod75(RADC): 半径补偿

① CNTC

这条指令对由cod02指定的中点进行补偿,这条指令执行完毕后,接着执行cod03指令。

② RADC

这条指令对由cod02指定的半径进行补偿,这条指令执行完毕后,接着执行cod03指令。

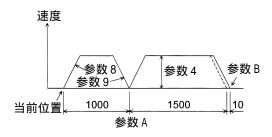
345修正值

修正值的取值范围为0到±999,999。当前值地址中包含了修正值。

当下列专用辅助继电器开启时,机器操作时将忽略在增量驱动(当 cod91 执行时执行)期间 cod73、cod74 和 cod75 设定的修正值。(因为修正值将加到正常转动和反向转动两个方向上,因此,如果在增量驱动中对往复运动执行修正,将发生偏移)

M9163: 对于 X 轴 M9164: 对于 Y 轴

5.6.14 cod76(CANC): 补偿取消


① CANC 取消以上的校正 cod73 到 cod75。

程序示例

cod91 (INC); 指定增量位移方法 cod00 (DRV) 把机器移动到 A 点 x1000;

cod73 (MOVC) 对位移进行校正 x10; 把 X 轴的校正值设为 "10" cod00 (DRV) 把机器移动到 B 点 x1500;

cod76 (CANC) 取消校正

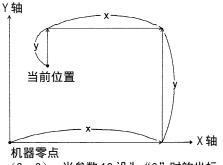
加速度由参数8和参数9决定。 操作速度由参数4决定(最大速度)。

5.6.15 cod90(ABS): 绝对地址, cod91(INC): 增量地址

cod 90 ABS	绝对 / 均	可应用型号					
cod 91 INC	伺服结束检查 指令组	No D	说明		0	系列名 FX2N-10GM FX2N-20GM	说明
	FX2N-10GM			FX2N-20GM			
基本	cod 90 ABS	绝双	吋地址	cod 90 ABS			
格式	cod 91 INC ②	增量	量地址	cod 91 INC ②			

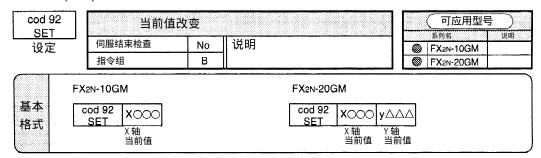
(1) ABS

执行了 cod90 指令以后,地址坐标 (X,Y) 就被看作距离零点 (0,0) 的绝对值。


但是,圆弧中点坐标(i,j)、半径(r)以及由cod71(SINT)和cod72(DINT)产生的位移始终被看作增量值。当指定值被忽略时,地址被看作绝对值。

(2) INC

执行了 cod91 指令以后,地址坐标(X,Y) 就被看作距离当前位置的增量值。


在增量驱动期间的校正禁止功能

当特殊辅助继电器 M9163(对于 X 轴)和 M9164(对于 Y 轴)开启时,在增量驱动 (当 cod91执行时执行)期间 cod73、cod74 和 cod75 设定的修正值将被忽略。机器操作时不进行任何修正。

(0,0)=当参数16设为"0"时的坐标

5.6.16 cod92(SET): 当前值改变

这条指令执行时,当前值寄存器中的值变成由该指令指定的值。因此,机械零点和电气零点都改变了。

例

右图显示的是在当前位置为(300,100)(绝对坐标)时执行 "cod 92(SET) x400,y200"前后的新旧初始位置。

5.7 顺序控制指令中的通用项

这一段说明了顺序控制中的基本指令(如LD和AND)和应用指令。 这些指令和定位控制指令一起使用,控制协助定位操作的辅助单元。

5.7.1 和 PLC 操作的区别

和 PLC 中的算术操作的区别在于顺序控制指令是步进型的,所以,不要执行循环算术操作。例如,在右图所示的程序中,如果执行 N100 行时 X00 是关闭的,则 Y00 将不会输出。当需要进行循环算术操作时,按后面所述的那样使用跳转指令。(参考第5.10 段)接触指令和定位控制指令(cod 指令)无关,在右图所示的程序中,第 N20 行上的 cod00 执行时并不考虑 N200 行的 X00 的状态是开还是关。

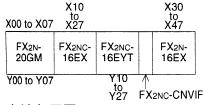

5.7.2 适用设备

表 5.16: 适用设备

	FX2N-10GM	FX2N-200	GM
	主单元	主单元	扩展
输入继电器	X00 到 X03 4 点	X00 到 X07 8 点	X10 到 X67
(X) *5	X375 到 X377 3 点*1	X372 到 X377 6 点*1	48 点*2
输出继电器 (Y)	Y00到Y056点	Y00到Y07 8点	Y10 到 Y67
			48 点*2
辅助继电器(M)	MO 到 M511 512 点	MO 到 M99 100 点	_
	(通用)	(通用)	
	M9000 到 M9175	M100 到 M511	
	(专用)	(通用) 412 点*3	
		M9000到 M9175	
		(专用)	
数据寄存器(D)	DO 到 D1999 2000 点	DO 到 D99 100 点	_
	(通用)	(通用)	
	D4000 到 D6999	D100 到 D3999	
	(文件) 3000 点*3	(通用) 3900 点*3	
	D9000 到 D9313	D4000 到 D6999	
	(专用)	(文件) 3000 点*3	
		D9000 到 D9599	
		(专用)	
变址寄存器	V0 到 V7(16 位)8 点	V0 到 V7(16 位)8 点	_
	Z0 到 Z7(32 位)8 点	Z0 到 Z7(32 位)8 点	
指针	P0 到 P127 128 点	P0 到 P255 256 点	

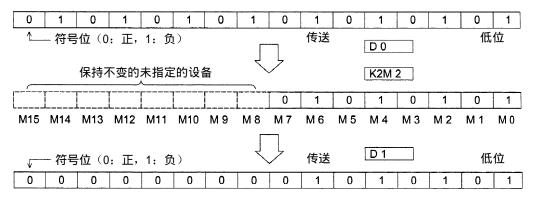
- 2 更低的数字分配给那个距FX2N-20GM主单元最近的扩展模块。扩展 I/0 的总数必须小于等于 48(参考第 1.4.5 节)。

I/0 分配示例

- *3 电池备用区
 - 当切断电源时,FX2N-20GM 在电源切断前的瞬间用锂电池 FX_{2NC}-32BL 保存状态。FX2N-10GM 使用电可插除只读存储器保存状态。应该在参数 101 中设定所使用的文件寄存器数量。
- '4 在FX2N-10GM中不能使用扩展块。如果需要更多的 I/O,应使用可编程序控制器。
- *5 当使用手动脉冲发生器或者中断定位指令(cod31、cod71和 cod72)时,这些设备中的部分或者全部都不能用于通用输入(参考第5.6.11节)。

5.7.3 位设备

用来处理开/关信息的如X、Y和M之类的设备称为位设备,而其它如D、V和Z之类的用来


处理数值数据的设备称为字设备。但是,位设备可以组合起来处理数值数据。组合的位设备

用"K"后面加一个数字"n"和首设备编号表示。

位设备可以按 4 位一个单元进行组合,KnM0 中的"n"定义了将被组合起来进行数据操作的

4位一组的组的数量。

K1 到 K4 可以操作 16 位数据,K1 到 K8 可以操作 32 位数据。例如,K2M0 表示用位设备 M0 到 M7 处理两组 4 位的数据。

当把 16 位数据传送至 K1M0 到 K3M0 中时,溢出的位数据将不会传送。32 位数据也是一样的。

当执行 16 位(32 位)数据操作并且为位设备指定的数字为 K1 到 K3(K1 到 K7)时,"0"将被置于高位位置上。

例如,如果使用 K4Y00 进行 32 位数据操作,则高 16 位被看作"0"。如果需要带符号的 32 位数据,那么必须指定 K8Y00。

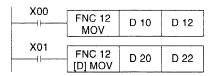
可以使用任意的位设备编号。但是建议在 X 和 Y 编号的最低数字位用 "0"。 (X00,X10,X20···,Y00,Y10,Y20,等)

对于 M,最理想的是使用 8 的倍数。但是,由于使用这样的编号可能会在分配设备编号时造成混淆,建议使用 10 的倍数,比如 M0、M10、M20 等。对于 X、Y 也是一样的。

指定字系列

从 D1 开始的一系列数据寄存器指的是 D1、D2、D3、D4···

当位设备被组合起来用于处理一系列的字时,这些位设备将按下列方式指定。


K1X00, K1X04, K1X14, ..., K2Y10, K2Y20, K2Y30, ...;

K3M0, K3M12, K3M24, K3M36,

这表示,所有的位设备都将被使用,以便没有哪个设备被跳过。

5.7.4 数据长度和指令执行格式

处理数值的应用指令是 16 位的还是 32 位取决于数值数据的位长。

数据从(D10)传送到(D12)

数据从(D21, D20)传送到(D23, D22)

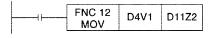
32 位指令用符号 D 做前缀来表示,如 D MOV, FNC D 12, FNC 12 D 等。在这种情况下,数值数据按如下方式处理。

- 1) 组合的位设备 Kn,如 KnX、KnY 和 KnM 可以分配从 K1(4位)到 K8(32位)的值。
- 2) 在低 16 位上使用偶数编号的数据寄存器,下面的数据寄存器用于高 16 位。指定低位设备为操作数。
- 3) 为32位指令指定操作数时,应该使用Z变址寄存器。 这个规则也适用于通用数据寄存器,文件寄存器可以用于各种指令中。

5.4.4 设备索引

变址寄存器 V 和 Z 是 16 位或 32 位数据寄存器,它们可以采用与通用寄存器同样的方式读写数值数据。

寄存器 V 用作 16 位操作数,而寄存器 Z 用作 32 位操作数


X00 FNC 12 D 0 V 1

X01 FNC 12 D 2 Z 7

[D] MOV

根据 V 或者 Z 的内容改变设备编号称 为设备编号索引。如左图所示。

当索引设备时,寄存器 V 和 Z 可以在 16 位指令和 32 位指令中一起使用,此 时它们没有任何差别。

假设(V1)=8,(Z2)=10: 4+8=12,11+10=21 D12 移动到 D21

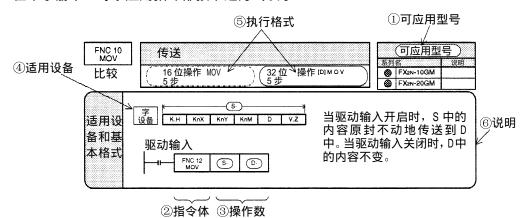
可修改的设备

X,Y,M,P(指针),KnX,KnY,KnM,D

可以用变址寄存器修改的设备是用于如左图所示应用指令的的那些。 但是,不能修改组合位设备 "Kn"和跳转目的标号 "P"。

5.8 基本顺序指令

顺序指令分成基本类型和应用类型两种。这两种类型的格式和 FX 系列可编程序控制器的相应格式相同。


表 5.17: 基本顺序指令

符号和名字	功能	电路表示和可适	说明
		用设备	
LD 加载	开始操作	 -11- -1	左边所示的接触器指令是用
	常开触点	X,Y,M SET,RST,FNC	来驱动如 SET、RST 之类的线
LDI 反向加载	开始操作	-#	圈指令和将在以后说明的应
	常闭触点	X,Y,M SET.RST,FNC	用指令的
AND 与	串联连接		适用设备是接触器 X(输入继
	常开触点	X.Y.M SET.RST,FNC	电器)、Y(输出继电器)和
ANI 反向与	串联连接		M(辅助继电器)
	常闭触点	X,Y,M SET,RST,FNC	例如,当遇到"LD X00"时,
OR 或	并联连接		程序执行不会挂起,直到 X00
	常开触点	X,Y,M SET,RST,FNC	开启; 当探测到 X00 开关状
ORI 反向或	并联连接	X,Y,M SET,RST,FNC	态后,将立即执行下一步。
	常闭触点	X,Y,M SEI,RSI,FNC	(这适用于所有的接触器指
		SET,RST,FNC	令)
ANB 块与	块间串联连接		没有适用于 ANB(并联电路块
ORB 块或	块间并联连接	SET,RST,FNC	的串联连接)和 ORB(串联电
			路块的并联连接)的设备
SET 设定	操作-保持	SET Y,M	一旦通过打开 SET 的触点驱
	线圈指令	1 2 1,00 1	动 SET 指令后,它就始终保
RST 重设置	操作-取消	H-IRST	持运行,直到通过打开 RST
	线圈指令	RST Y,M	的触点驱动了 RST 指令。
			适用设备是线圈 F 和 M
NOP 空操作	空操作	用来擦除程序或	
		者输入空白符	

^{*}甚至不用接触器指令就可以驱动

5.9 应用指令格式

在本手册中,每条应用指令都按下述方式表示。

① 可应用模式

显示了那些可以使用所说明的指令的型号。

型号分成 FX2N-10GM 和 FX2N-20GM 两类,可应用的系列标了符号"●"。

说明; √: 可以使用 ×: 不能用

②指令体

应用指令由功能号FNC00到FNC93指定。对每条指令都分配了能代表它的内容的符号(助记符或指令符)。例如,"MOV"分配给FNC12。有些应用指令只需要指令体。但是,大多数情况下,指令体后面都跟有一个或更多的操作数。

③操作数

操作数指定了执行指令所需的条件和内容,按规定的顺序指定操作数。

S: 源

指令执行时内容不变的操作数称为源,用符号 "S" 标识。如果一个源操作数可以被索引(后面将说明),那么它后面会跟有 ".",显示为(S.)。当有两个以上的源时,显示为(S1.)、(S2.)等。

D: 目的

指令执行时内容改变的操作数称为目的,用符号"D"标识。如果一个目的操作数可以被索引(后面将说明),那么它后面会跟有".",显示为(D.)。当有两个以上目的时,显示为(D1.)、(D2.)等。


n: 常量

只能指定为常量 K 或 H 的操作数用 "n"表示。当有两个以上常量时,表示为 n1、n2 等。

④ 适用设备

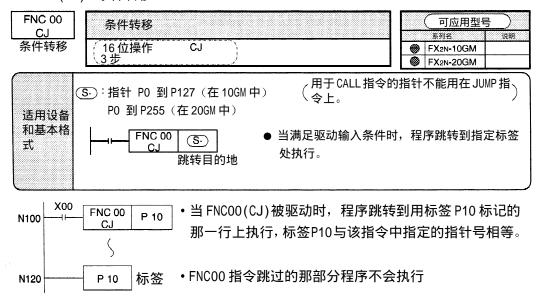
象 X、Y 和 D 这类的设备可被用作操作数。 X、Y 和 M 可用作位设备或字设备(参考"5.6.3 位设备") 数据寄存器 D(16 位)和变址寄存器 V(16 位)和 Z(32 位)可以象处理数据一 样处理。

左边的表达式表示,常量 K 和 H、组合位设备 KnX、KnY 和 KnM、数据寄存器 D 和变址寄存器 V 和 Z 可用作操作数(S1.)和(S2.)。此表达式也表示位设备 Y 和 M 可被指定为(D.)。

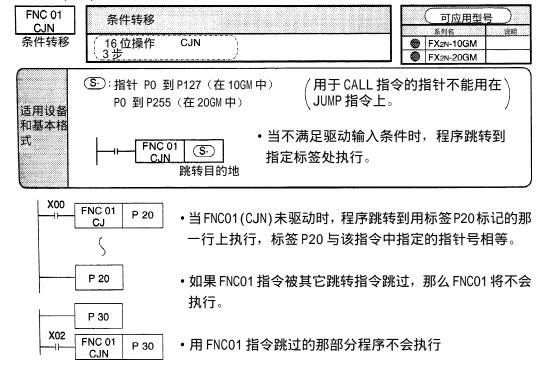
- 变址寄存器 V0 到 V7 和 Z0 到 Z7 不能进一步变址 (例如, V0Z 是无效的)。
- ⑤ 执行格式 既可以处理 16 位数又可以处理 32 位数的指令通过加上前缀符号[D]来表示(参考"5.6.4 数据长度和指令执行格式")。
- ⑥ 说明这里说明一些基本内容,比如指令能干什么、必须怎样设操作数等。

应用指令驱动输入

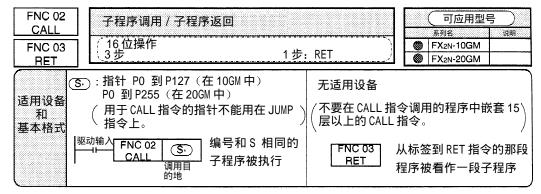
一条应用指令可以通过某些接触器驱动,也可以无需任何接触器直接驱动。

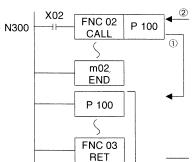

指令 FNC03 和 FNC09 是例外,它们总是直接驱动,无需任何接触器。

当一条应用指令是通过某些接触器驱动时,如果驱动输入关闭,指令将不会执行。(就象指令被跳转功能跳过了一样)

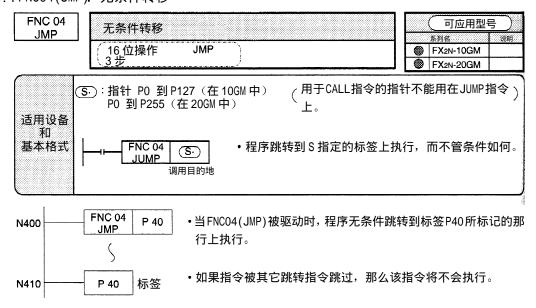

当程序中指定了定位控制指令、m码指令、FNC03 到 FNC05、FNC08 和 FNC09 等时,接触电路会自动复位,然后,程序执行返回母线。

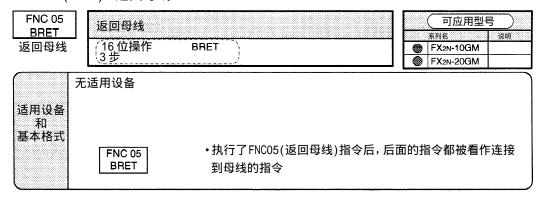
5.10 顺序应用指令的说明 这一段详细说明了顺序应用指令。

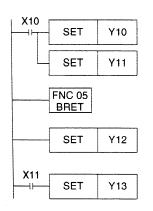

5.10.1 FNC00(CJ): 条件转移



5.10.2 FNC01(CJN): 条件非转移

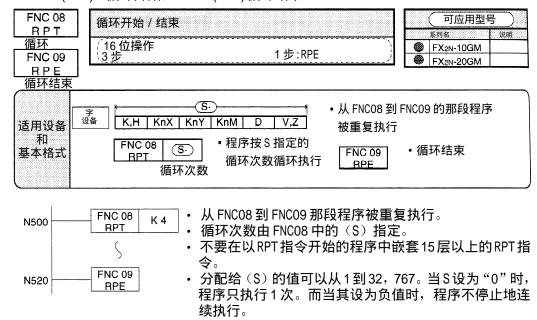

5.10.3 FNC02(CALL): 子程序调用, FNC03(RET): 子程序返回




- 当FNC02(CALL)指令被驱动时,程序跳转到标签 P100(操作②)所标记的那行上执行。
- 在 P100 处开始的子程序将被执行,然后程序再通过指令 FNC03(RET) (操作 1)返回到以前的那行编号 .N300 上执行。
- 从 m02 (m102 用于子任务) 后面的标签 (P) 到 FNC03 指令之间的程序被看作一段子程序。

5.10.4 FNCO4(JMP): 无条件转移

5.10.5 FNC05(BRET): 返回母线

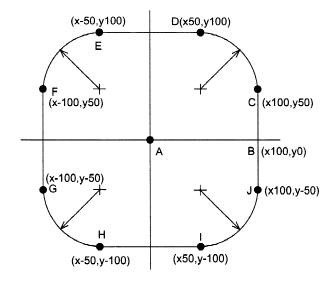

- 线圈 Y10 和 Y11 通过接触器 X10 驱动,但是 Y12 驱动时,却不用考虑 X10 的开 / 关状态。
- 如果程序中不包含FNC05(返回母线)指令,则Y12也由X10 驱动。
- Y13 在 X11 开启时驱动。

其它导致返回母线的指令

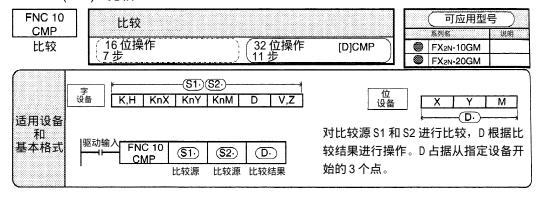
当程序中使用了下列指令中的某一个时,将会自动执行母线返回,即使程序中并不包含 BRET 指令。

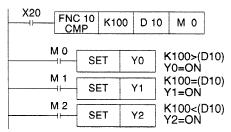
- 1) 定位控制指令(cod 指令)。
- 2) 在 AFTER 模式下的 m 码指令。
- 3) 不使用驱动接触器的应用指令,如FNCO3(RET)、FNCO4(JMP)、FNCO8(RPT)、FNCO9 (RPE)等。
- 4) 当执行 FNC00(CJ)或 FNC01(CJN)指令时。

5.10.6 FNC08(RPT): 循环开始, FNC09(RPE)循环结束

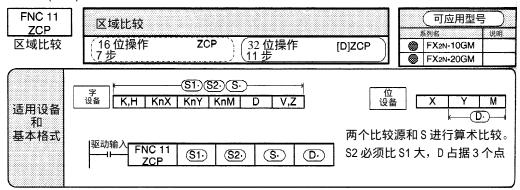

连续路径和循环指令(仅用在 FX_{2N} -20GM中)

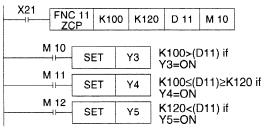
如果在以RPT和RPE指令为定界符的程序的开始和末尾使用了cod01、cod02或cod03指令,这些cod指令的执行过程类似于连续执行。使用此功能,可以重复地扫描轨迹。在重复扫描轨迹的同时,把M9015(连续路径模式)设为关闭。

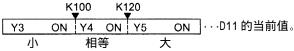

程序示例


	015		程序编号				
Ī	N100	cod28	(DRVZ)	到A点			
Ì	N101	cod90	(ABS)				
	N102	cod00	(DRV)	x 100			
\rightarrow	N103	FNC08	(RPT)	K 100			
	N104	cod01	(LIN)	(x 100)	y 50	f 500	$A \rightarrow B$
	N105	cod03	(CCW)	x 50	y 100	i -50	
	N106	cod01	(LIN)	x -50	(y100)		$B \rightarrow C$
	N107	cod03	(CCW)	x -100	y 50	j -50	$C \rightarrow D$
	N108	cod01	(LIN)	(x -100)	y - 50		$D \rightarrow E$
	N109	cod03	(CCW)	x -50	y -100	i 50	$E \rightarrow F$
	N110	cod01	(LIN)	x 50	(y -100)		$F \to G$
	N111	cod03	(CCW)	x 100	y - 50	j 50	$G \rightarrow H$
	N112	cod01	(LIN)	(x100)	y 0		$H \rightarrow I$
L :	N113	FNC09	(RPE)				$I \rightarrow J$
_	N114	m02	(END)				$J \rightarrow B$

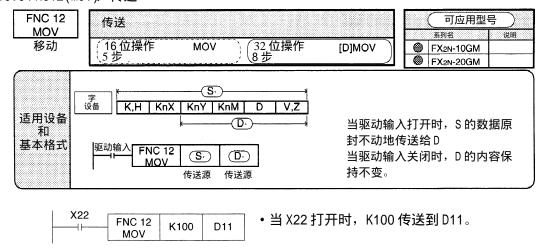
(): 圆括号中指定的 X、Y 可以省略。

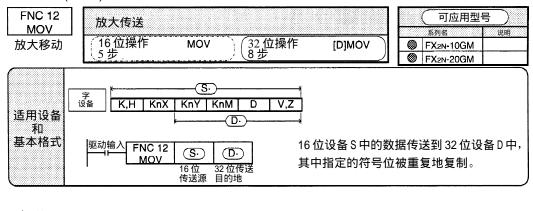

5.10.7 FNC10(CMP): 比较

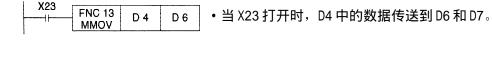


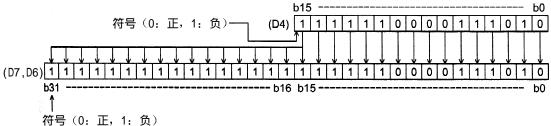

- 对 K100 和 D10 的当前值进行算术比较。 (例如: -10<2)
- 为结果输出分配3个点。即使驱动接触器关闭且比较指令没被执行时,这个结果输出仍保持以前的状态。

5.10.8 FNC11(ZCP): 区域比较

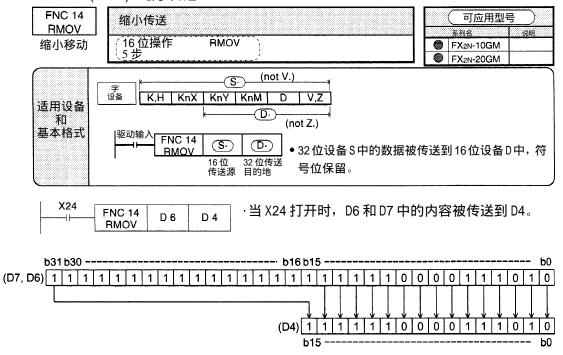


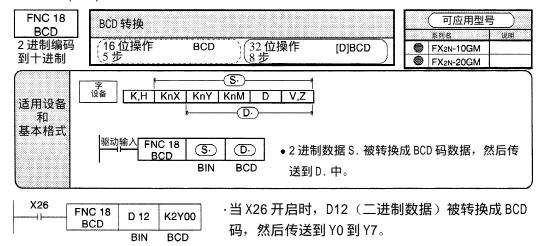

- K100和D11比较, K120也和D11比较。
- 为结果输出分配3个点,即使驱动接触器关闭且比较指令没被执行时,这个结果输出仍保持以前的状态。



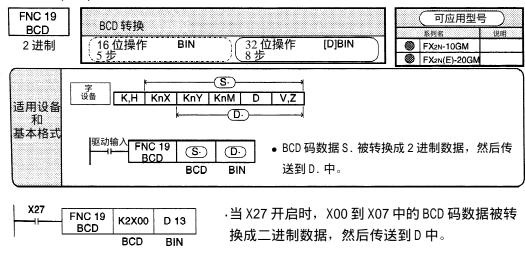

5.10.9 FNC12(MOV): 传送

5.10.10FNC13(MMOV): 放大传送

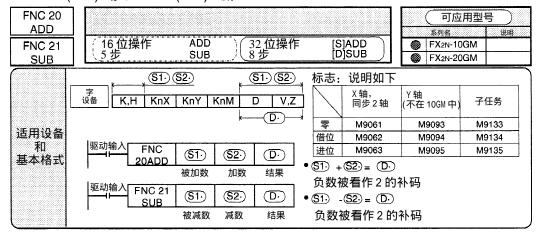



• 在以上的例子中,D4 的 b15 位传送到(D7/D6)的 b15 位到 b31 位。(D7/D6)中的数据 变成负数 (和 D4 的一样)。

5.10.11FNC14(RMOV): 缩小传送

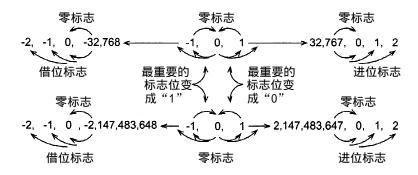

当 X24 开启时,(S.) 中最重要的位被传送到(D.) 中最重要的位中。其它位从最不重要的位开始依次传送。b15 到 b30 被忽略,未被传送。

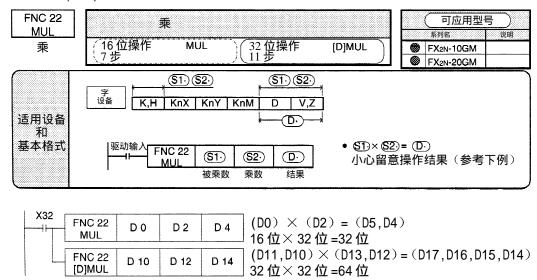
5.10.12FNC18(BCD): BCD 转换


- 如果 BCD 转换结果在 0 到 9,999 的范围之外,则 BCD 指令不会被执行。如果 BCD 转换结果在 0 到 99,999,999 的范围之外,则[D]BCD 指令不会被执行。
- BCD 指令用来把定位单元中的二进制数据转换成要输出到外部设备中的 BCD 码数据 (7- 段显示等等)。


5.10.13FNC19(BIN): BIN 转换

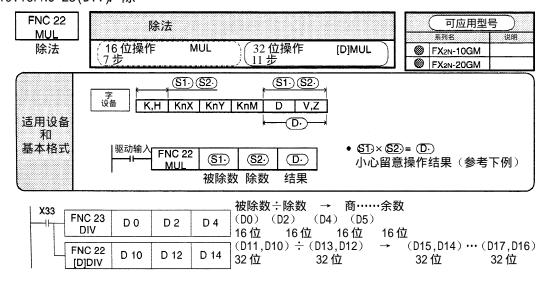
- BIN 指令用来取得数字开关设定值(BCD数据),并传送到定位单元。当源数据不是BCD 码时,这条指令不会执行。
- 常量 K 会自动转换成 BIN (二进制) 码并被当作 BIN 码看待。不需要使用这条指令。



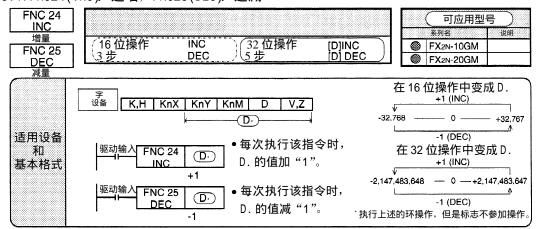


标志操作

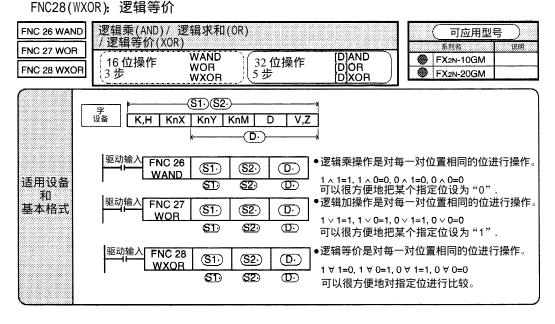
如上表所示,用作标志的专用辅助继电器的选择根据程序类型的不同而不同 (用于 X 轴的,用于同步 2 轴的、用于 Y 轴的和用于子任务的)。



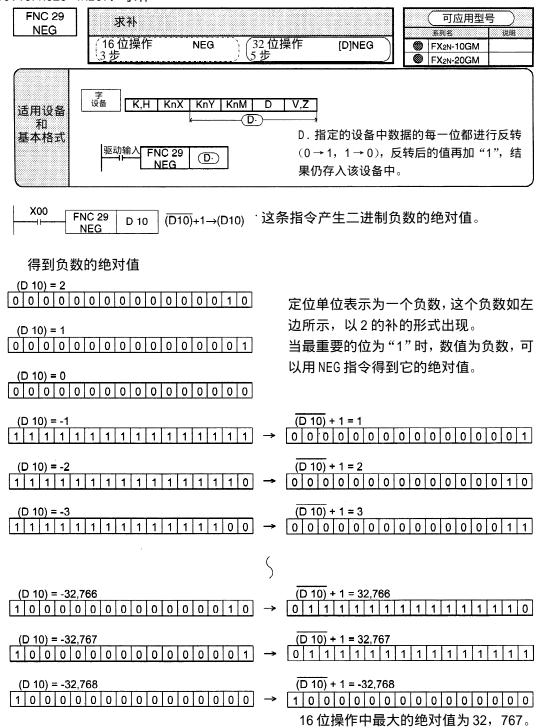
5.10.15FNC22(MUL): 乘

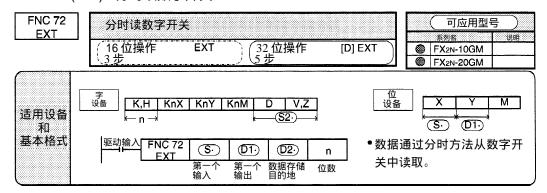

当任一操作数为负数时,结果也为负数。32 位操作的结果是64 位。因为无法监视64 位数据,所以参加乘法操作的数值必须能使其乘积小于等于32 位。

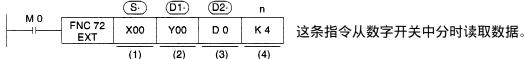
5.10.16FNC 23(DIV): 除



- 当除数是"0"时,指令不会执行。
- 当被除数或者除数是负数时,商变成负值。当被除数是负数时,余数变成负值。


5.10.17FNC24(INC): 递增, FNC25(DEC): 递减


5.10.18FNC26(WAND): 逻辑乘,FNC27(WOR): 逻辑求和,


5.10.19FNC29 (NEG): 求补

5.10.20FNC72(EXT): 分时读数字开关

读入一个正数

1) 首输入号(占据4个输入点) 这个例子中的连接如下图所示。

X00: DSW 的终端 1

X01: DSW 的终端 2

X02: DSW 的终端 4

X03: DSW 的终端 8

2) 分时操作中的首输出号(占据1到8个输出点) 这个例子中的连接如下图所示。

Y00: DSW 的终端 C (100 位)

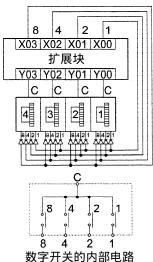
Y01: DSW 的终端 C (101 位)

Y02: DSW 的终端 C (102 位)

Y03: DSW 的终端 C (103 位)

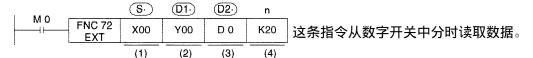
3) 数据存储目的地

在执行一条 16 位指令时,一个最多 4 位的数字开关的 BCD 码被转换成二进


制数并存入 D0 中。

在执行一条32位指令时,一个最多8位的数字开关的BCD码被转换成二进制数并且存入(D1, D0)中。

 ↑ ↑ 高4位 低4位


4) 位数

K1 到 K4 用于 16 位指令,K5 到 K8 用于 32 位指令。(参见右页) 需要的数字开关输出点的数量和指定的位数一样多。 在 FX2N-10GM 中,可以使用 K1 到 K6 (6 位)。

读取一个正/负数(在FX_{2M}-10GM 无此功能)

当使用 K17 到 K24 来指定位数时, 负数也能被读取。

1) 首输入号(占据5个输入点) 这个例子中的连接按下图所示。

X00: 正/负指定输入

当 X00 开启时, 负数

当 X00 关闭时,正数

X00: DSW 的终端 1

X01: DSW 的终端 2

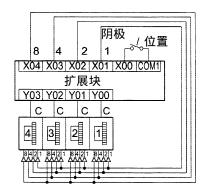
X02: DSW 的终端 4

X03: DSW 的终端 8

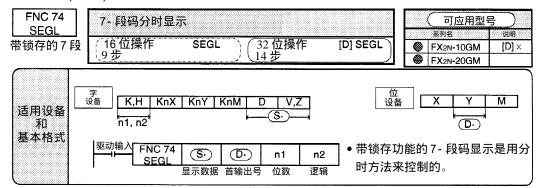
- 2) 分时操作中的首输出号(占据4个输出点) 和上页的说明一样。
- 3) 数据存储目的地和上页的说明一样。
- 4) 位数

根据位数从 1 到 8,使用相应的 K17(H11)到 K24(H18)。(位数加上 16 决定了"K"的值。)

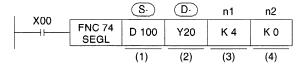
当位数为5到8时,必须使用32位指令。


指定位数清单

根据要读取的位数,EXT 指令需要使用下表所示的 1/0。


表 5.18: 位数指定清单

要读取	读一个正数		读一个负数		负数		
的位数	输入	输出	"n"的	输入	输出	"n"的	占据的数据寄存器数量
H J III XX	个数	个数	设定值	个数	个数	设定值	
1		1	K1		1	K17	
2		2	K2		2	K18	
3		3	К3		3	K19	1
4	4	4	K4	5	4	K20	
5	7	5	K5	3	5	K21	
6		6	K6		6	K22	
7		7	K7		7	K23	2
8		8	K8		8	K24	


为了读取 DSW 的设定值,必须在参数 33 中设置位一切换时间(初始值: 20 毫秒)到。当 DSW 连接到定位单元时,参数 33 可以设为 7 毫秒左右。如果用可编程序控制器输出代替 DSW,则应该考虑到可编程序控制器的位一切换时间,给它设定一个足够长的时间。

5.10.21FNC74(SEGL): 7- 段码分时显示

显示一个正数

分时输出用于带锁存功能的 7- 段 显示。

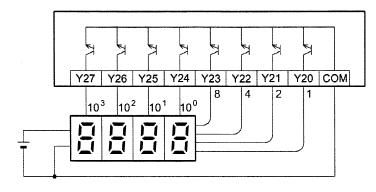
- 1) 存有要显示的数据的设备编号 本例中,该设备是数据寄存器 D100。在 32 位指令的情况下是 D101 和 D100。
- 2) 数据输出的首编号。

本例中的输出编号如下。

Y20: 到 BCD 输入 1 的终端

Y21: 到 BCD 输入 2 的终端

Y22: 到 BCD 输入 4 的终端

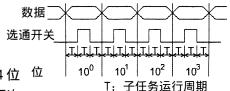

Y23: 到 BCD 输入 8 的终端

Y24: 到 100 位选通输入

Y25: 到 101 位选通输入

Y26: 到 102 位选通输入

Y27: 到 103 位选通输入

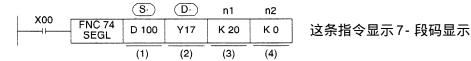


3) 位数

K1 到 K4 用于 16 位指令,K5 到 K8 用于 32 位指令。因为在 FX2N-10GM 中使用此指 令来显示正在执行的程序号时,最多只有2位可用于显示,所以需要的选通信号 输出的数量和指定的位数是相同的。

4) 逻辑参数

•参考下一页的"7-段码显示逻辑"。 内部的二进制数被转换成 BCD 码 数据,然后用分时方法输出。



• 这条指令根据运行周期进行处理,显示 4 位 位 需要12个运行周期。这条指令只能使用两次

(这条指令只能用于子任务程序中)。

读取一个正/负数(不能在 FX₂₀-10GM 中使用)

当使用 K17 到 K24 来指定位数时, 负数也能被读取。

1) 显示数据设备编号

和上页相同

2) 数据输出的首编号。

Y17

:用于识别正/负。

当 Y17 开启时: 负数

当 Y17 关闭时: 正数

Y20 到 Y27: 和上页相同。(I/O 是八进制的,所以不能使用 Y18 和 Y19)

根据位数从 1 到 8,使用相应的 K17(H11)到 K24(H18)。(位数加上 16 决定了"K" 的值。)

4) 逻辑参数 参考下表

3) 位数

7- 段码显示逻辑

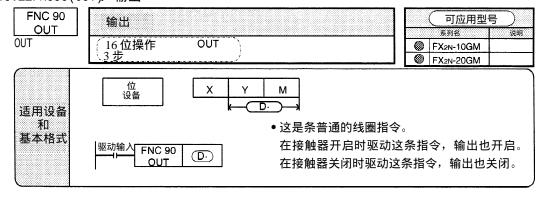
数据输入: "正逻辑"表示输入数据用高电平的 BCD 码表示。

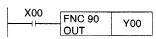
"负逻辑"表示输入数据用低电平的 BCD 码表示。选通开关信号:"正逻辑"表示,当 信号电平高时,数据被锁存并保持。"负逻辑"表示,当信号电平低时,数据被锁存 并保持。

表 5.19: 7- 段码显示逻辑

数据输入	选通开关信号	n2
π.	正	K0
15	负	K1
负	正	K2
	负	К3

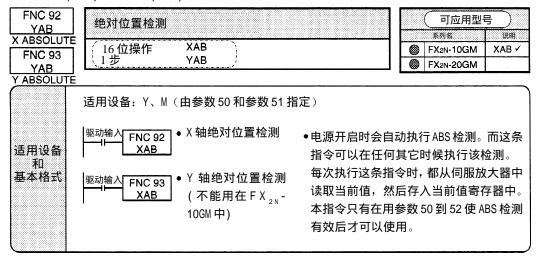
位数指定的清单

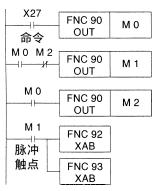

根据要显示的位数,SEGL 指令需要使用下表所示的 I/0。


表 5.20: 位数指定的清单

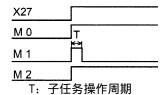
要读取	读一个	`正数	读一个负数		
的位数	输出个数	"n1"的	输出个数	"n1"的	占据的数据寄存器数量
H J IM XX	ти I УХ	设定值	THI I XX	设定值	
1	5	K1	6	K17	
2	6	K2	7	K18	1
3	7	К3	8	K19	I
4	8	K4	9	K20	
5	9	K5	10	K21	
6	10	K6	11	K22	2
7	11	K7	12	K23	۷
8	12	K8	13	K24	

在 FX_{2N} -10GM 中,当输出为正数时,只有 K1 和 K2 可以被设定。当输出一个负数和一个正数时,只能设定 K17。


5.10.22FNC90(OUT): 输出



- · 执行左边所示的程序时,如果 X00 开启,则输出 Y00。当 X00 关闭时,Y00 也关闭。
- ·如果在 FNC90(OUT)指令前没有用于驱动输入的接触器指令(也就是说,当 FNC指令直接由母线给出时), Y00继续保持开启状态。



为了允许重复执行,并且还要仅执行一次本指令,那么就需要一个脉冲信号。

下面是脉冲信号的一个例子。

当命令输入是X时,用M代替它。(这条指令执行时,会创建一个直接控制输入输出的方法。)

• 这条指令通常用在子任务程序 0100 中。

• 如果在定位单元正在运行时出现了"只开启了伺服放大器"的紧急停止输入或者 伺服放大器电源关闭,则"伺服开启输入"不能进入定位单元,即使后来伺服放 大器恢复正常,伺服放大器也仍将被停用。

在这种情况下,如果执行了上述指令,伺服放大器将恢复正常操作。

6. 特殊辅助继电器和特殊数据寄存器

本章解释说明了定位单元的特殊辅助继电器和特殊数据寄存器。

6.1 概述

以前所说的从M9000开始的辅助继电器和从D9000开始的数据寄存器被作为专用设备分配。根据控制情况,可以读写各种命令输入、状态信息和参数设定值。

特殊辅助继电器(M9000或更大)

特殊辅助继电器(特殊 Ms)主要是用于写入命令输入和读取状态信息。

命令输入(写(读))

可以通过开启象开始 / 停止和 FWD/RVS/ZRN 之类的特殊 Ms 来发出操作命令,而且无需使用外部输入端子就可以通过程序来控制这些命令。当从外部输入端子输入命令时,有些特殊 Ms 会开启,这些 Ms 也可以用于读取操作。

状态信息(读)

这些特殊 Ms 可以被读取,用来表示定位单元的状态。

特殊数据寄存器(D9000或更大)

当前位置信息和正在执行的程序号 / 步号以及各种参数设定值的信息都存在特殊数据寄存器中,可以通过程序进行读写操作。

• 特殊 Ms 和特殊 Ds 也可以被分配给缓冲存储器(BFM), FX_{2N} -10GM 和 FX_{2N} -20GM 中的那些 Ms 和 Ds 可以通过可编程序控制器程序(FROM/TO 指令)用可编程序控制器进行读写(参考第 7 章)。

怎样使用特殊 Ms/Ds。

按如下方式使用特殊 Ms 和专用 Ds (在定位程序中)。

怎样使用特殊辅助继电器进行读操作。

O100, N0; 子任务程序 →N00 P100 X轴错误检测 N01 LD M9050; Y0 输出 NO2 OUT YO; 7 **JMP** 结束 -P100: m102;

• 进行读操作时,特殊 Ms 被看作接触器。在 左边所示的例子中,当X轴发生错误时,一 个通用输出 Y 0 被用来向外部送出一个输 出。(对于子任务,参考第5.2节)

怎样使用特殊数据寄存器进行读操作。

O100, NO; 子任务程序 7- 段码分时显示 N40 FNC74 (SEGL) X轴当前位置 D9005 Y0 **K**3 K0 ì m102; 结束

• 用FNC74(SEGL)指令在外部显示X轴的当前 值(3位)。 (对于 FNC74,参考第5.10.21节)

怎样使用特殊辅助继电器进行写操作。

O100, N0; N0 LD X0; OUT M9007; N1

子任务程序 通用输入 X0 X轴错误复位

结束

• 在进行写操作时, 特殊 Ms 被看作线圈。在 左边所示的例子中,X轴发生的错误用通用 输入 X0 复位 (M9007).

怎样使用特殊数据寄存器进行写操作。

O100, NO;

₹ m102;

子任务程序

N40 FNC12 ([D] MOV)

传送指令(32位)

K20.000

D9208;

参数 4: 最大速度

结束 m102;

• 把参数 4 (X 轴上的最大速度) 的设定值改 为 "20,000"。在此情况下,特殊 D 必须是 双字的,而且也必须使用32位指令。 对于低16位,使用偶数编号的数据寄存器, 高 16 位使用接下去的那个数据寄存器。指

定低位设备为操作数

6.2 特殊辅助继电器清单

用于写操作的特殊辅助继电器(指定输入)。(在 $\mathrm{FX}_{\mathrm{2N}}$ -10GM 中,y 轴不能使用)

表 6.1: 特殊辅助继电器清单

X轴	Y轴	子任务	属性	说印	1
M9000	M9016	M9112		单步模式命令	
M9001	M9017	M9113		开始命令	
M9002	M9018	M9114		停止命令	ᄽᅉᄣᄣᄣᇄᇷᇷᄼ
M9003	M9019	_		m 码关闭命令	当这些特殊 Ms 由一个主 任务程序(同步 2 轴程序
M9004	M9020			机械回零命令	或 X/Y 轴程序)或子任务
M9005	M9021	1	R/W	FWD JOG(正向点动)命令	线
M9006	M9022	1		RVS JOG (反向点动) 命令	相当于定位单元的"输入
M9007	M9023	M9115		错误复位	端子命令"的替代命令
M9008	M9024	1		回零轴控制	אין אין ו די די אין אי ניייני
M9009	M9025			未定义	
M9010	M9026			未定义	
M9011	M9027	M9116		未定义	
M9012	到	到		但是,M9118 的功能如下页	_
M9013	M9030	M9125		所示	
	M9014			16 位 FROM/TO 模式 (通用/	
	WIJOTT		W	文件寄存器)	
M90	015	_	**	连续路径模式	FX _{2N} -10GM 未定义
	M9031	M9126		未定义	_
	_	M9127	R/W	电池 LED 亮灯控制	FX _{2N} -10GM 未定义
	_	M9132			_
_	_	M9133			
		M9134			
	_	M9135		未定义	
M9036	M9041			不 促义	
到	到	_			
M9040	M9045				
M9046, M9047					
M9160 ⁻¹		_	W	在操作过程中以多步速度 进行 m 码控制	FX _{2N} -20GM 未定义

属性

- W: 此特殊辅助继电器是只写的。
- R/W: 此特殊辅助继电器即可读又可写。当从一个外部输入端子给出一个命令输入时, 该继电器开启。
- *1 在 FX_{2N}-20GM 中未定义(参考第 5.4.3 节)
- 在同步 2 轴模式(仅存于 FX_{2N} 20GM 中)中,即使只对 X 或 Y 轴发出单步模式命令、开始命令、停止命令或 m 码关闭命令,这些命令对两个轴都有效。
- 命令输入用的特殊辅助继电器的开 / 关状态由定位单元里的 CPU 连续监控。
- 当电源打开后,每个特殊辅助继电器都被初始化为关闭状态。

用于读操作的特殊辅助继电器(状态信息)。(在 $\mathrm{FX}_{\scriptscriptstyle 2N}$ -10GM 中,y 轴不能使用)

表 6.2: 特殊辅助继电器清单

(进行中的子任务操作)		(VIII)									
M9049 M9081			子任务	属性		钟 一					
M9050			M9128								
M9051	M9049	M9081	_		定位结束						
M9052	M9050	M9082	M9129		错误检测						
M9053	M9051	M9083	_		m 码开启信号*1						
M9054	M9052	M9084	_		m 码备用状态*1						
M9055 M9087 一	M9053	M9085	M9130		m00(m100)备用状态						
M9055	M9054	M9086	M9131		m02(m102)备用状态						
M9056	M9055	M9087	_								
M9057 M9089 一	M9056	M9088	M9132		(进行中的子任务操	这些特殊 Ms 根据定位 单元的状态而打开/关 闭					
M9059 M9091	M9057	M9089	_		在电源侦听和机械回						
M9060 M9092 M9118 操作错误*1 零标志*1 借位标志*1 进位标志*1 进位标志*1 进位标志*1 进位标志*1 进位标志*1 DOG 输入 START 输入 STOP 输入 STOP 输入 ZRN 输入 PVS 輸入 PVS 輸入 单元的开关状态而	M9058	M9090	_	R	未定义						
M9061 M9093 M9133 零标志*1 借位标志*1 进位标志*1 进位标志*1 进位标志*1 世位标志*1 DOG 输入 START 输入 STOP 输入 STOP 输入 ZRN 输入 文些特殊 Ms 根据が M9068 M9100	M9059	M9091			未定义						
M9062 M9094 M9134 借位标志*1 M9063 M9095 M9135 M9064 M9096	M9060	M9092	M9118		操作错误*1						
M9063 M9095 M9135 进位标志*1 DOG 输入 START 输入 STOP 输入 STOP 输入 ZRN 输入 EWD 輸入 M9068 M9100 ー M0069 M9101 ー M0	M9061	M9093	M9133		零标志*1						
M9064 M9096 — M9065 M9097 — M9066 M9098 — M9067 M9099 — M9068 M9100 — M9069 M0101 — M9069 M0101 — DOG 输入 START 输入 ZRN 输入 这些特殊 Ms 根据短 FWD 输入 单元的开关状态而	M9062	M9094	M9134		借位标志*1						
M9065 M9097	M9063	M9095	M9135		进位标志*1						
M9066 M9098	M9064	M9096	_		DOG 输入						
M9067 M9099	M9065	M9097			START 输入						
M9068 M9100 — FWD 输入 单元的开关状态而	M9066	M9098	_		STOP 输入						
M9008	M9067	M9099	_		ZRN 输入	这此性对 No 担据学位					
	M9068	M9100	_		FWD 输入						
」	M9069	M9101	_		RVS 输入	单儿的开关状态间约 开/关闭					
M9070 M9102 — 未定义	M9070	M9102	_		未定义	71750					
M9071 M9103 — 未定义	M9071	M9103	_		未定义						
M9072 M9104 — SVRDY 输入	M9072	M9104	_		SVRDY 输入						
M9073 M9105 — SVEND 输入	M9073	M9105	_		SVEND 输入						
M9074 到 M9106 到 M9136 到 + 完以	M9074 到	M9106 到	M9136 到		ナウツ						
M9079	M9079	M9111	M9138		木止乂						
— M9139 独立2轴/同步2轴*3 大文 H1555 H2 H255	_	_	M9139		独立2轴/同步2轴*3	*************************************					
	_	_	M9140	1	端子输入: MANU	这些特殊 Ms 根据定位					
-	_	_	_	R	未定义	单元中正在执行的程					
- M9142 未定义 打开/关闭	_	_	M9142]	未定义	序、端子输入状态等而 træ/x/3					
— — M9143 电池电压低*3	_	_	M9143]	电池电压低*3						

说明 X 轴 Y 轴 子任务 | 属性 当前值建立标志*2(这个标志在执行了一次 R/W 回零或绝对位置检测操作后设置,在电源切 M9144 | M9145 断后复位。) M9146 到 M9159 未定义 执行 INC 指令时, 考虑到了 cod73 M9163 M9164 R/W 到 cod75 指令的校正数据 M9165 到 M9175 未定义

表 6.2: 特殊辅助电器清单

属性

R: 这个特殊辅助继电器是只读的。你不能对它进行写入操作。

R/W: 这个特殊辅助继电器即可读又可写。可以通过 RST 指令关闭 M9144 和 M9145。

- *1 X 轴和 Y 轴在同步 2 轴操作中同时操作。
- ² 即使绝对位置检测结束后,回零结束标志(M9057 和 M9089)也不会开启。 当你想用一个标志来表示绝对位置检测结束时,应该使用"当前值建立标志" (M9144 和 M9145)。(返回到零点后,当前值建立标志不会复位)
- *3 在 FX_{2N}-10GM 中未定义。

6.3 特殊数据寄存器清单

特殊数据寄存器(在 FX_{2N} -10GM 中,y 轴不可用)

表 6.3: 特殊数据寄存器清单

ΧŞ	油	Υ	轴	子	任务	属		
高位	低位	高位	低位	高位	低位	发送 方向	指令 形式	说明
_	D9000	_	D9010		_	R/W		程序号规范(参数 30: "3")*1
_	D9001		D9011	_		[3		正在执行的程 序号*2
_	D9002	_	D9012	_	D9100	R		正在执行的行 号*2
_	D9003	_	D9013	_	_			m 码(二进制) *2
D9005	D9004	D9015	D9014	_	_	R/W	[D]	当前位置(参考下一页末)
D9007	D9006	D9017	D9016		_		_	未定义
D9009	D9008	D9019	D9018	_	_			未定义
		_	_	_	D9020			存储器容量
_		_	-	_	D9021			存储器类型
	_	_	_	_	D9022			电池电压*3
_	_	_	ĺ	_	D9023			低电池电压检测电平(初始值: 3.0V) *3
_	_	_		_	D9024			检测到的瞬时 电源中断数量 *3
_	_	_		_	D9025	R	[8]	瞬时电源中断 检测时间(初 始值: 10 毫秒) *3
_	_	_	_	_	D9026			型号: 5210 (FX _{2N} -20GM) 或 5310 (FX _{2N} -10GM)
_	_	_	_	_	D9027			版本
_	_	_	_	_	D9028	_	_	未定义
_	_	_		_	D9029	_		未定义
D9030 至	D9039	D9040 至	IJ D9049	D9050	到 D9059	_	_	未定义

表 6.3: 特殊数据寄存器清单

X 轴		1567月 <u>年</u> 7年	曲	子任	· 务	属	<u></u> 性	
高位	低位	高位	低位	高位	低位	发送 方向	指令 形式	说明
	D9060	_	D9080	_	D9101			正在执行的步号*2
	D9061 D9062	_	D9081 D9082	(D9103) —	D9102 —		[8]	错误码*2 指令组 A: 当前 cod
_	D9063	_	D9083	_	_	R		状态*2 指令组 D: 当前 cod 状态*2
D9065	D9064	D9085	D9084	D9105	D9104		[D]	暂停时间 设定值*2
D9067	D9066	D9087	D9086	D9107	D9106		[D]	暂停时间 当前值*2
(D9069)	D9068	(D9089)	D9088	(D9109)	D9108		[8]	循环次数 设定值*2
(D9071)	D9090	(D9091)	D9090	(D9111)	D9110		[0]	循环次数 当前值*2
D9073	D9072	D9093	D9092					未定义
D9075	D9074	D9095	D9094			R	[D]	当前位置 (转换成 脉冲)
(D9077)	D9076	(D9097)	D9096	(D9113)	D9112	R	[\$]	发生操作 错误的步 号*2
D9079	D9078	D9099	D9098	D9114 到	D9119			未定义
D9121	D9120	D9123	D9122	_	_		[D]	X/Y 轴补 偿数据
D9125	D9124	_	_	_	_			圆弧中 心点(i) 补偿数 据*3
_	_	D9127	D9126	_	_	R/W		圆弧中 心点(j) 补偿数 据*3
从高		到低位 D902	28	_				圆弧半 径(r) 补偿数 据*3
	_	_	_	D9130 到	D9139	_	_	未定义

X \$	油	Y	轴	子信	I 务	属	性	说明	
高位	低位	高位	低位	高位	低位	发送方向	指令形式	OCPA	
_	_	_	_	_	D9140			变址寄存器 V0	
_	_	_	_	_	D9141			变址寄存器 V1	
	_	_	_	_	D9142			变址寄存器 V2	
	_	_	_	_	D9143		[8]	变址寄存器 V3	
_	_	_	_	_	D9144		ری	变址寄存器 V4	
_	_	_	_	_	D9145			变址寄存器 V5	
	_	_	_	_	D9146			变址寄存器 V6	
_	_	_	_	_	D9147	D /W		变址寄存器 V7	
_	_	_	_	D9149	D9148	R/W		变址寄存器 Z0	
_	_	_	_	D9151	D9150			变址寄存器 Z1	
_	—	_	_	D9153	D9152			变址寄存器 Z2	
	_		_	D9155	D9154		[D]	变址寄存器 Z3	
	_	_	_	D9157	D9156		[ח]	变址寄存器 Z4	
	_	_	_	D9159	D9158			变址寄存器 Z5	
	_			D9161	D9160			变址寄存器 Z6	
	_	_		D9163	D9162			变址寄存器 Z7	
		从 D916	4 到 D91	99		-		未定义	

表 6.3: 特殊数据寄存器清单

属性

R: 这个数据寄存器是只读的。你不能对它进行写入操作。

R/W: 这个数据寄存器即可读又可写。在读写数据时,对于"S"类的数据寄存器使用 16 位指令,对于"D"类的数据寄存器使用 32 位指令。

- ^{*}1 在同步 2 轴模式(仅在 FX_{2N} -20GM 下可用)下,用于 X 轴的特殊 D 有效,而用于 Y 轴的特殊 D 被忽略。
- * 2 在同步 2 轴模式(仅在 FX_{2N} -20GM 下可用)下,用于 X 轴的特殊 D 和用于 Y 轴的特殊 D 中存储的数据相同。
- *3 在 FX_{2N}-10GM 中未定义。

用干当前位置数据的特殊数据寄存器

上页所示的特殊数据寄存器 "D9005和D9004"和 "D9015和D9014"储存了当前位置数据,

这些数据是基于参数3中设定的实际单位的。

你可以在定位单元就绪(在 AUTO 或 MANU 模式下)且它不是正在等待剩余距离驱动的时候把数字数据写入这些数据寄存器中。在写入数据时,应使用 32 位指令。

另一方面,用来表示转换成脉冲形式的当前位置的特殊数据寄存器 "D9075和D9074" 和 "D9095和D9094"是只读的,它们的数据随着存储在数据寄存器 "D9005和D9004" 和 "D9015和D9014"的数据的改变而自动变化。

用于参数的特殊数据寄存器(定位参数)

(在 FX_{2N}-10GM 中, y 轴不可用)

表 6.4: 特殊数据寄存器清单

	X 轴				性		
				发送	指令	说明	
高位	低位	高位	低位	方向	形式	מאווא	
D9201	D9200	D9401	D9400			参数 0: 单位体系	
D9203	D9202	D9403	D9402			参数 1: 电机每转一圈所发出的命令脉冲数量	
D9205	D9204	D9405	D9404			参数 2: 电机每转一圈的位移	
D9207	D9206	D9407	D9406			参数 3: 最小命令单元	
D9209	D9208	D9409	D9408			参数 4: 最大速度	
D9211	D9210	D9411	D9410			参数 5: JOG 速度	
D9213	D9212	D9413	D9412			参数 6: 偏移速度	
D9215	D9214	D9415	D9414			参数 7: 间隙校正	
D9217	D9216	D9417	D9416			参数 8: 加速时间	
D9219	D9218	D9419	D9418			参数 9: 减速时间	
D9221	D9220	D9421	D9420	0]		参数 10:插补时间常量*1
D9223	D9222	D9423	D9422			参数 11: 脉冲输出格式	
D9225	D9224	D9425	D9424	R/W	[D]	参数 12: 旋转方向	
D9227	D9226	D9427	D9426	IX/ W	[0]	参数 13: 回零速度	
D9229	D9228	D9429	D9428			参数 14: 蠕动速度	
D9231	D9230	D9431	D9430			参数 15: 回零方向	
D9233	D9232	D9233	D9432			参数 16: 机械零点地址	
D9235	D9234	D9435	D9434			参数 17: 零点信号计数	
D9237	D9236	D9437	D9436			参数 18: 零点信号计数开始计时	
D9239	D9238	D9439	D9438			参数 19: DOG 开关输入逻辑	
D9241	D9240	D9441	D9440			参数 20: 限位开关逻辑	
D9243	D9242	D9443	D9442			参数 21: 定位结束错误校验时间	
D9245	D9244	D9445	D9444			参数 22: 伺服就绪检测	
D9247	D9246	D9447	D9446			参数 23: 停止模式	
D9249	D9248	D9449	D9448			参数 24: 电气零点地址	
D9251	D9250	D9451	D9450			参数 25: 软件极限(高位)	
D9253	D9252	D9453	D9452			参数 26: 软件极限(低位)	

属性

R/W: 这个数据寄存器即可读又可写。在读写数据时,使用 32 位指令 "D"。

*1虽然给Y轴分配了特殊Ds(D9421,D9420),但只有用于X轴的特殊Ds(D9221,D9220) 有效,而用于Y轴的被忽略。 用于参数的特殊数据寄存器(I/O 控制参数)(在 FX_{yx} -10GM 中,y 轴不可用)

表 6.5: 特殊数据寄存器清单

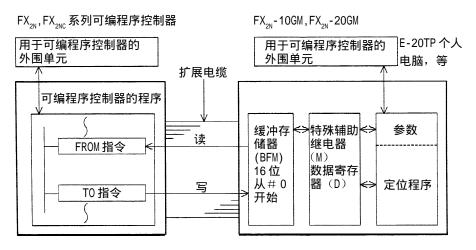
	<u>,你致据奇</u>			属性		1
Х	轴	Υş	<u> </u>			
高位	低位	高位	低位	发送 方向	指令 形式	说明
D9261	D9260	D9461	D9460			参数 30:程序号规定方式*1
D9263	D9262	D9463	D9462			参数 31: DSW 分时读取的首输 入号*1
D9265	D9264	D9465	D9464			参数 32: DSW 分时读取的首输 出号*1
D9267	D9266	D9467	D9466			参数 33: DSW 读取时间间隔*1
D9269	D9268	D9469	D9468			参数 34: RDY 输出有效*1
D9271	D9270	D9471	D9470			参数 35: RDY 输出号*1
D9273	D9272	D9473	D9472			参数 36: m 码外部输出有效*1
D9275	D9274	D9475	D9474			参数 37: m码外部输出号*1
D9277	D9276	D9477	D9476			参数 38: m 码关闭命令输入号 *1
D9279	D9278	D9479	D9478	R/W		参数 39: 手动脉冲发生器
D9281	D9280	D9481	D9480			参数 40: 手动脉冲发生器生成的每脉冲倍增因子
D9283	D9282	D9483	D9482			参数 41: 倍增结果的分裂率
D9285	D9284	D9485	D9484		[D]	参数 42: 用于启动手动脉冲 发生器的首输入号。
D9287	D9286	D9487	D9486			参数 43:
D9289	D9288	D9489	D9488			参数 44:
D9291	D9290	D9491	D9490			参数 45:
D9293	D9292	D9293	D9492			参数 46: 空
D9295	D9294	D9495	D9494			参数 47:
D9297	D9296	D9497	D9496			参数 48:
D9299	D9298	D9499	D9498			参数 49:
D9301	D9300	D9501	D9500			参数 50: ABS 接口
D9303	D9302	D9503	D9502	R *2		参数 51: ABS 的首输入号
D9305	D9304	D9505	D9504			参数 52: ABS 控制的首输出号
D9307	D9306	D9507	D9506			参数 53: 单步操作
D9309	D9308	D9509	D9508			参数 54: 单步模式输入号
D9311	D9310	D9511	D9510	R/W		参数 55: 空
D9313	D9312	D9513	D9512			参数 56: 用于 FWD/RVS/ZRN 的通用输入声明

属性

R/W: 这个数据寄存器即可读又可写。在读写数据时,使用 32 位指令 "D"。

- *1 在同步 2 轴模式下, X 轴的设定值有效,而 Y 轴的设定值无效。
- ² D9300 到 D9305 和 D9500 到 D9505 被分配作为检测绝对位置的参数。因为绝对位置检测是在定位单元电源开启时执行的,所以不能通过特殊辅助继电器启动。要执行绝对位置检测,可以用一个定位用的外围单元来直接设定参数。

7. 用可编程序控制器进行通信

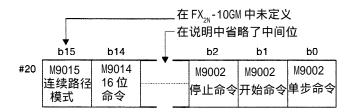

当 FX_{2N} -10GM/ FX_{2N} -20GM定位单元被连接到 FX_{2N} 、 FX_{2NC} 系列可编程序控制器上后,就可以设定诸如位移、操作速度之类的定位数据,还可以监控当前位置。本部分解释说明了用可编程序控制器进行通信来执行这些操作。

7.1 概述

通过定位单元内部的缓冲存储器来使用可编程序控制器的FROM/TO指令,就可以与可编程序

控制器进行通信。

下面这个示意图显示了可编程序控制器和定位单元之间的通信。(系统配置参见第1章。)

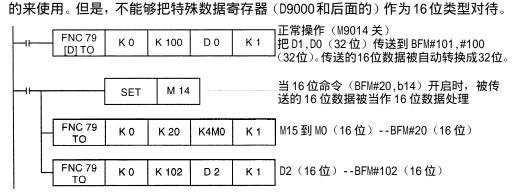

FROM 指令:把 BFM 中的内容读到可编程序控制器中。TO 指令:把可编程序控制器中的内容写入 BFM 中。

- 当执行顺序程序中的 FROM 或 TO 指令时,就会在可编程序控制器和定位单元之间 进行通信。这时,定位单元可能处于 MANU 模式或 AUTO 模式下。
- 缓冲存储器与定位单元中的特殊 Ms 和特殊 Ds 互锁。当缓冲存储器中的内容改变时,特殊 Ms 和特殊 Ds 中的内容也会发生改变,定位单元自动在它们之间进行通信。

7.2 缓冲存储器

7.2.1 缓冲存储器的配置

- 缓冲存储器号用"#"表示,一个点由16位数据组成。
- 定位单元里的象辅助继电器、I/0 继电器等之类的位设备和数据寄存器、参数等之类的字设备被分配给缓冲存储器的 16 位数据。
- 分配了位设备的缓冲存储器的每一位的操作都不同。 例: BFM#20


上图显示了缓冲储存器 #20。特殊辅助继电器 M9000到 M9015 被分配给 #20。例如,M9001(X 轴开始命令)被分配给 #20 的第 1 位。当创建一个顺序程序以使该位被T0 指令(写入缓冲存储器)开启后,就给出了开始命令。

• 分配了一个字设备的缓冲存储器用 16 位或 32 位来表示单个值。 例: BFM#9000

D9000 分配给缓冲存储器 # 9000。

你可以通过用TO指令把数据写入#9000来指定程序号。 对于字设备,缓冲存储器编号和特殊数据寄存器的编号相等。 • 缓冲存储器可以分为独立使用类型(16位[S])和连续使用类型(32位[D])两类,对于当前位置之类的32位数据,FROM/TO指令中应该加上"[D]"。 当你想把连续使用类型的缓冲存储器作为16位类型看待时,应该开启特殊辅助继电器 M9014(BFM#20 b14)。然后你就可以在程序的FROM/TO指令中把它当作16位

7.2.2 缓冲存储器的分配

定位单元中的缓冲存储器、各种设备和参数按下表所示分配。在相对应的每对缓冲存储器和设备/参数中存储的数据相同。

关于特殊辅助继电器、特殊数据寄存器和参数的详细资料,请参考第6章。

在 FX_{2N} - 10GM 中,没有使用与不支持的设备(如特殊辅助继电器、特殊数据寄存器和参数)相对应的缓冲存储器。

表 7.1: BFM 清单

BFM 号	被分配的设备		属性	说明				
#0 到#19	D9000 到 D9019	根据特殊数据寄存器的属性而变化(参考第6章)		特殊数据寄存器被分配给缓冲存储器,这些缓冲存储器和BFM#9000到#9019相交迭。				
#20	M9015 到 M9000							
#21	M9031 到 M9016	R/W						
#22	M9047 到 M9032							
#23	M9063 到 M9048							
#24	M9079 到 M9064			 特殊数据寄存器被分配给缓冲存				
#25	M9095 到 M9080	R	[\$]	· 付外数据句件品版力能与缓冲任 · 储器				
#26	M9111 到 M9096	, K		1 旧台				
#27	M9127 到 M9112							
#28	M9143 到 M9128							
#29	M9159 到 M9144	R/W						
#30	M9175 到 M9160	K/W						
#31	未定义	_	_	_				
#32	X07 到 X00	R	[\$]	输入继电器被分配给缓冲存储				
#33 到 #46	未定义	_	_	器。 但是,X10 到 X357 没有被分配。				
#47	X377 到 X360	R	[8]	在 FX _{2N} -10GM 中,X0 到 X3 和 X37 到 X377 被分配给缓冲存储器。				
#48	Y07 到 Y00	R/W	[\$]	输出继电器被分配给缓冲存储				
#49 到 #63	未定义	_	_	器。 但是,Y10 到 Y67 没有被分配。 在 FX ₂₀₁ -10GM 中, Y0 到 Y5 被分 配给缓冲存储器。				
#64 到 #95	M15到M0至M511 到 M496	R/W	[8]	通用辅助继电器被分配给缓冲存 储器。				
#96 到 #99	未定义	_	_	_				
#101, #100 到 #3999, #3998	D101,D100 到 D3999,D3998	R/W	[D]	通用数据寄存器被分配给缓冲存储器。 但是,D0 到 D99 没有被分配。				
#4001, #4000 到 #6999, #6998	D4001,D4000 到 D6999,D6998	R	[D]	文件寄存器被分配给缓冲存储 器。				

表	7 1	١.	BFM	石	耒
44				ייי	114

BFM 号	被分配 的设备	属性		说明
#7000 到 #8999	未定义			_
#9000 到	D9000 到	根据特殊数据寄	存器的属	特殊数据寄存器被分配给缓冲存储器,
#9019	D9019	性而变化(参考第6章)		这些缓冲存储器和 BFM#0 到#19 交迭。
#9020 到	D9020 到	根据特殊数据寄存器的属		特殊数据寄存器被分配给缓冲存储器
#99119	D9119	性而变化(参考)	第6章)	1寸7个女人7点 = 7 1 十百百个人 / 1 日 1 5 日 5 日 5 日 5 日 5 日 5 日 5 日 5 日 5
#9200 到	D9200 到	R/W *1	[D]	X轴参数被分配给缓冲存储器
#9339	D9339	IN/ W	[D]	△和学校スアメンノメ目レニロニム/中1于旧品
#9400 到	D9400 到	R/W *1	[D]	Y轴参数被分配给缓冲存储器
#9599	D9599	137 11	[0]	1 和多数加入月日2日20/1711年14日

- R: 这个缓冲存储器是只读的。你不能对它进行写入操作。
- R/W: 这个缓冲存储器即可读又可写。在读写数据时,对于"S"类的缓冲存储器使用 16 位指令,对于"D"类的缓冲存储器使用 32 位指令。
- 对于字设备,缓冲存储器编号和特殊数据寄存器的编号相等。
- *1. D9300 到 D9305 和 D9500 和 D9505 被分配作为检测绝对位置的参数。因为绝对位置检测是在定位单元电源开启时执行的,所以缓冲存储器不能用来启动绝对位置检测。(但是,这样的缓冲存储器可以被读取。)
 - 用一个定位用的外围单元来设定检测绝对位置的参数。记住,当在 FX_{2N} -10GM 中使用以后将说明的表方法时,也要求使用定位用的外围单元。
- 传送到#32或以后的缓冲存储器的传送指令所需的执行时间大约是常规执行时间的两倍。
- 文件寄存器(#4000到#6999)只对[D]FROM指令有效。
 [D]T0指令不会被执行。

7.3 程序示例

这一节解释说明了可编程序控制器中可用的基本指令,如程序号指定、操作命令、读取当前值等等。

7.3.1 指定程序号

缓冲存储器号

#0 或 #9000 : 同步 2 轴, X 轴 (FX_{2N}-10GM)

#10 或 #9010: Y 轴

任何一个都可被设定(FX_∞-10GM: #0或#9000)

当用一个可编程序控制器来指定程序时,把参数30(程序号指定方式)设为"3"。

程序示例

把要执行的程序号写入 D200 和 D201

程序号可以用除 D200 和 D201 以外的数据寄存器或者 K (常量)直接指定。

数据变化定时

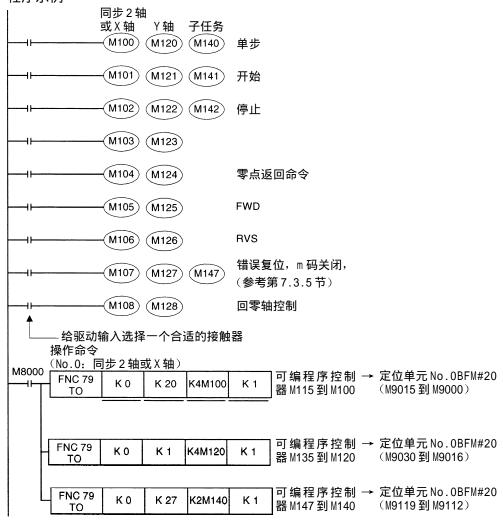
当给出开始命令时,定位单元尝试着读取程序号。

因此,在给出开始命令之前设定的值始终有效,不管当前处于什么模式(MENU 或AUTO)。

BFM即使在给出开始命令后仍可以改变。但是,新的程序号设置操作要等到定位程序在 "END"处结束并且再次给出开始命令后才能执行。

7.3.2 操作命令 (开始 / 停止)

从可编程序控制器发出各种操作命令。


缓冲存储器号

BFM#20 (同步 2 轴, X 轴)、#21 (Y 轴) 和 #27 (子任务) 的每个位的分配情况如下:

b15	b14	_	b8	b7	b6	b5	b4	b3	b2	b1	b0
连续 路径	16位命令		回零	错误 复位	RVS	FWD	零点 返回 命令	m 模 式关 闭	停止	开始	单步

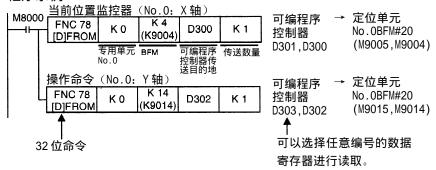
#20 和 #21 的 b13 到 b9 都没有定义。#27(子任务)只有 b0、b1、b2 和 b7 定义了。上图显示了 #20(同步 2 轴,X 轴)、#21(Y 轴)和 #27(子任务)中的位分配情况。

程序示例

输入定时

单步、开始、停止、回零、FWD 和 RVS 命令与定位单元的外部端子并行处理。给驱动输入选择一个合适的接触器。

7.3.3 读取当前值


把当前值读到可编程序控制器

缓冲存储器号.

#5, #4或#9005, #9004: X轴(FX_{2N}-10GM) #15, #14或#9015, #9014: Y轴

存储的当前位置相同当前位置被存作32位数据

程序示例

数据读取定时

不管定位单元的模式(AUTO 或 MENU)或状态(BUSY 或 READY)是什么,当前位置都可以被读取。

7.3.4 设定位移和操作速度

用可编程序控制器设置定位数据,如位移和操作速度。

缓冲存储器编号

#100 到 #1999: FX_{2N}-10GM #100 到 #6999: FX_{2N}-20GM

这些缓冲存储器始终作为32位数据处理。

参考下面所示的定位程序示例

程序示例

把 D51、D50 和 D100 中的设定值写入 BFM 中。

通过开启特殊辅助继电器 M9014 (BFM#20,b14),可以把32位缓冲存储器作为独立的16位类型对待。这样就可以允许T0指令(不带D)把16位数据分别发送到各个BFM中。(参考第7.2.1节)

定位程序示例

在定位程序中,位移、操作速度等等都是间接指定的(参考第5.5节)。 本程序中只显示了位移和速度。除此之外,所有可被间接指定的设备,如半径、中心 点等都可以用可编程序控制器设置。

```
Cod00(DRV) 位移由 D101 和 D100(32 位数据)指定。
x DD100;← ("DD"指定 32 位。)速度被指定为 "fD000"。
数据寄存器号 数据寄存器号

Cod00(DRV)
x D0; ← 位移由 D0(16 位数据)指定。速度被指定为 "fD000"。
数据寄存器号
```

数据变化定时

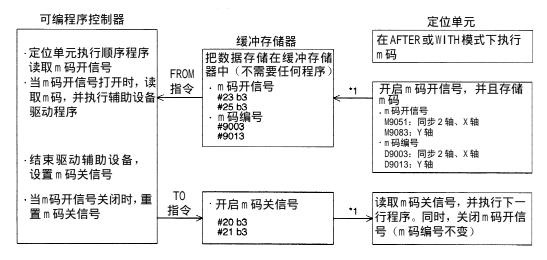
数据可以被写入缓冲存储器中,而不管定位单元的模式(AUTO或MANU)或状态(BUSY或 READY)如何。但是,因为定位单元是在程序执行时读取位移和速度设定值,所以必须在指令执行前把设定的数据写入缓冲存储器。在指令执行时或执行后写入的数据在下次执行该指令时生效。

7.3.5 读取 m 码

把 m 码读到可编程序控制器中, 以驱动辅助设备。

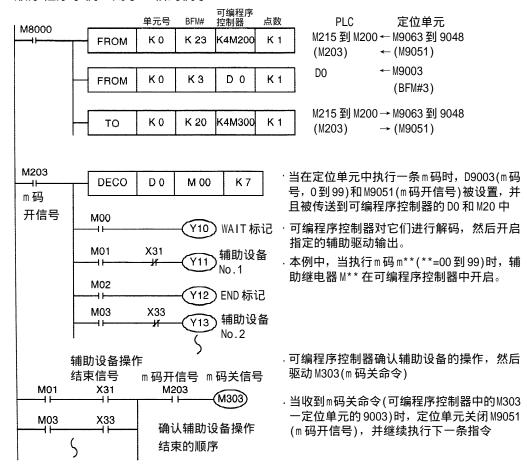
缓冲存储器号

下表显示了和m码相关的缓冲存储器


表 7.2: 缓冲存储器号

201121 2011 11 IA IA I											
	同步2轴,	X 轴*1	Y轴								
	缓冲存储器	特殊 M/D	缓冲存储器	特殊 M/D							
m码开信号	#23 b3	M9051	#25 b3	M9083							
m码关命令	#20 b3	M9003	#21 b3	M9019							
m 码编号	#9003	D9003	#9013	D9013							

^{*1:} 在 FX , - 10GM 中只有 x 轴可用


m码操作

- 每条 m 码都是在 AFTER 模式或 WITH 模式下驱动的 (参考第 5.1.3 节)。在这两个模式下,当 m 码驱动时,m 码开信号开启,并且 m 码号被存入适当的特殊数据寄存器中(与缓冲存储器互锁)。m 码开信号一直保持开状态,直到m 码关信号开启。
- 下表中显示了可编程控制器和 m 代码之间的通信关系。

*1 定位单元自动对缓冲存储器、特殊辅助继电器和特殊数据寄存器进行读写操作。

定位程序示例

cod 00 (DRV) x1000 m01

c
m03;

c
m00; (WAIT)

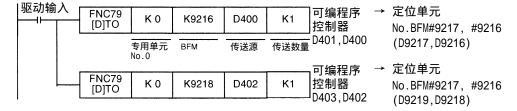
- ◆ 这是一条 WITH 模式下的 m 码驱动命令。m 码 01 存入 BFM 中。在上面的例子中,Y11 被驱动。
- 这是一条 AFTER 模式下的 m 码驱动命令。m 码 03 存入 BFM 中。在上面的例子中,Y13 被驱动。
- ◆ 当执行 WAIT 指令时,m 码 00 存入 BFM 中。在上面的例子中,Y10 被驱动。

数据读取定时

可以不管定位单元的模式(AUTO或 MANU)和状态(BUSY或 READY)如何而读取数据。但是,当m码开信号如上述顺序程序例子所示的那样开启时,建议驱动辅助设备,因为m码编号只在定位程序中的m码驱动指令执行时才被读取。

7.3.6 读取/改变参数

读取或改变定位单元中的参数。不能改变系统参数。


缓冲存储器编号

#9200 到 #9513

在 FX₂₁-10GM 中只有 X 轴可用。同样,有些参数也不能使用。具体细节请参考第 4 章)

顺序程序示例

改变 X 轴的加 / 减速度时间

数据改变定时

可以不管定位单元的模式(AUTO或MANU)而把数据写入缓冲存储器。但是,如果有些参数在运行过程中改变了,就可能不能实现正确定位。

确保在开始操作执行前改变参数(也就是说,在触发开始输入之前)。当定位单元的 电源关闭时,参数内容被复位到外围单元设置的参数值。

7.4 用表方法定位(FX2N-10GM)

在以下版本的单轴定位单元 FX_{2N} -10GM 中,增加了一个新功能,从而可以用 PLC 的 FROM/TO 指令进行定位。

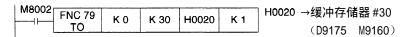
当没有专用于定位单元的外围设备时,这条指令允许使用用于PLC的外围设备进行定位控制操作。

(当使用了绝对位置检测功能时,就必须使用用于定位单元的外围设备来改变参数)

7.4.1 表功能概述

当 FX_{2N} -10GM中的特殊辅助继电器 M9165 开启时,使用表方法进行定位控制变为有效。 提供了最大 100 个表入口。每个入口含有四种类型的信息:命令码(和指令相对应)、 位置数据(地址)、速度数据和 m 码值。信息存储在定位单元的通用寄存器中。存储 每条信息须使用两个数据寄存器(32 位)。

数据寄存器号和表入口号(在后面说明)是固定的。D1000分配给入口No.0(从No.0到No.99共有100个入口号可供使用,)。


当定位数据已通过 TO 指令写入数据寄存器且操作已开始时,定位的执行将建立在已写入的信息上。

7.4.2 表方法声明

要使用表方法,必须开启 FX_{2M}-10GM 中的特殊辅助继电器 M9165。

M9165: 表方法功能有效 (缓冲存储器 #30 b5)

顺序程序示例 (开关 M9165 开启)

一旦开启了 M9165 后,它就一直保持开启状态,直到电源关闭。因此,一旦声明了表方法,它就将一直保持有效,直到电源关闭。

7.4.3 表数据的分配

- 当表方法生效时,FX_{2N}-10GM 的数据寄存器 D1000 到 D1999 被分配作为定位数据存储寄存器(数据不是使用电池来进行备份的)。
- 提供了No.0 到 99 共 100 个表入口,每个入口分配了四种类型的信息: 命令码(和指令相对应)、位置数据(地址)、速度数据和 m 码。
- 对每条信息分配了两个数据寄存器(32位),因此,每个入口占8个数据寄存器。

表 7.3: 表数据的分配

入口号	命令码	定位数据	速度数据	m 码
No.0	D1000, D1001	D1002, D1003	D1004, D1005	D1006, D1007
No.1	D1010, D1011	D1012, D1013	D1014, D1015	D1016, D1017
No.2	D1020, D1021	D1022, D1023	D1024, D1025	D1026, D1027
:				
No.98	D1980, D1981	D1982, D1983	D1984, D1985	D1986, D1987
No.99	D1990, D1991	D1992, D1993	D1994, D1995	D1996, D1997

共有100个入口(No.0到99)可用。(完整的表清单请参考12.4)

数据寄存器根据下表所示 M9165 的状态而改变。

表 7.4: M9165 的操作

M9165 状态	参数缓冲(D9200 或更高)	数据寄存器 (D0 到 D1997
开	在MANU和AUTO间切换时值不变	在MANU和AUTO间切换时值不变
关	当从 MANU 变到 AUTO 时初始化	当从 MANU 变到 AUTO 时清 0

7.4.4 表数据设置

必须设置四个数据(命令cod、位置数据、速度数据和 m 码)

命令码

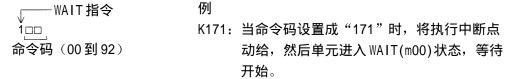
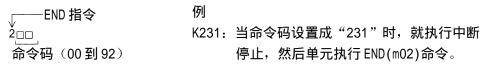

指定对应于某条定位指令的操作为命令码,如高速定位(DRV)、返回机械零点(DRVZ)等。

表 7.5: 设置定位数据

KIII KEKEMI					
命令码	说明	命令码	说明		
0	高速定位(DRV)	71	以 1-步速度中断慢进给		
			(使用一个入口)(SINT)		
1	多速操作(LIN)	72	以 2-步速度中断点动给		
4	定时器 (TIM)		(使用二个入口)(DINT)		
9	伺服结束检查 (CHK)	73	位移补偿 (MOVC)		
28	返回机械零点(DRVZ)	76	取消补偿 (CANC)		
29	设置电气零点(SETR)	90	指定绝对地址(ABS)		
30	返回电气零点(DRVR)	91	指定增量地址 (INC)		
31	中断停止(忽略剩余距离)(INT)	92	改变当前值(SET)		


• WAIT指令 (m00)

当在两位命令码的头部加上"1"时,WAIT指令(m00)就被包含到操作中了。

• END 指令(mO2)

当在两位命令码的头部加上"2ⁿ"时,END(m02)指令就包含到操作中了。

位置数据

把位移距离和地址设置为位置数据。

有些指令不需要设置位置数据,请参考下面的清单。

设定值范围和 cod 指令的相同,请参考第5章。

速度数据

把定位操作速度设置为速度数据

设定值范围和 cod 指令的相同,请参考第5章。

m 码信息

当驱动一条定位指令时,就会输出一个m码。

这时,m码开信号、m码编号和m码等待信号被写入特殊辅助继电器和特殊数据寄存器中(分配给 X 轴的)。

m码关命令也通过一个特殊辅助继电器给出。

m 码开信号 : M9051 m 码编号(二进制) : D9003 m 码等待信号 : M9052 m 码关命令 : M9003

在m码信息中,可以把m码输出设为AFTER模式(此种模式下,在定位结束后输出一个m码)或WITH模式(此种模式下,在定位过程中输出一个m码)。

设置值"0":无丽码

设置值 "1", "3" 到 "99": 在 AFTER 模式下输出 m 码

设置值 "100" 到 "199": 在 WITH 模式下输出 m 码

• 当设置为 "2" 时,实际操作和 END 指令并不对应。(但是,在由外围单元显示的监视器上,会显示出 "END") 在使用 END 指令时,按如上所示在定位信息的顶部加上 "2"。

定位数据清单

下表显示了为每个命令码设置的信息清单,用" $\sqrt{100}$ "做了标记的项是必须设置的。当给"未定义"的项输入数值时,该数值被忽略。

命令码"72"表示以 2- 步速度进行中断点动给,它使用了两个入口,因为必须设置两个速度(参考下页)。

表 7.6: 定位数据清单

命令码	位置数据	速度数据	m 码	说明	
0	√	√ *1	√	高速定位(DRV)	
1	√	√ √		多速操作(LIN)	
4	√	未定义	√	定时器(TIM)	
9	未定义	未定义	√	伺服结束检查 (CHK)	
28	未定义	未定义	√	返回机械零点(DRVZ)	
29	未定义	未定义	√	设置电气零点(SETR)	
30	未定义	未定义	√	返回电气零点(DRVR)	
31	√	√	√	中断停止(忽略剩余距离)	
31				(INT)	
71	√	√	√	以 1-步速度中断点动给	
/ 1				(使用一个入口)(SINT)	
72	72		未定义	以 2-步速度中断点动给	
12	未定义	√	√	(使用两个入口)(DINT)	
73	✓	未定义	√	位移补偿 (MOVC)	
76	未定义	未定义	√	取消补偿 (CANC)	
90	未定义	未定义	√	√ 指定绝对地址(ABS)	
91	未定义	未定义	√	指定增量地址(INC)	
92	√	未定义	√	√ 改变当前值(SET)	

^{*1:} 当速度数据设为 "0"时,命令码(0)被忽略,并执行下一个入口。

命令码的注意事项

1) 处理命令码 0(高速定位)

当速度设为"0"时,将不会进行任何操作,并且跳过入口。 虽然速度在 cod 指令中可以忽略,但在表方法中它不能忽略。

2) 处理命令码72(以2-步速度中断点动给)

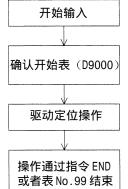
当设定了72(以2一步速度中断点动给)后,要求使用2速命令。确保使用了两个入口。

3) 错误信息

将以与使用指令进行定位相同的方法产生适当的错误码,有关错误的含义和错误 处理步骤,请参考第10章。

处理参数

定位参数和 I/O 控制参数可以从 PLC 中写入 (系统参数不能改变)。


- 当电源开启时,参数被赋予初始值(默认值)。当参数数据用 PLC 改变时,相应的参数也发生改变。当电源关闭时,参数返回初始值。确保在电源开启后设定必要的参数。
- 当你改变用于绝对位置检测功能的参数(参数 50,参数 52)时,只需处理用于 定位单元的外围设备。

(当定位单元电源开启时,将执行绝对位置检测。即使设定值从可编程序控制器写入 TO 指令,绝对位置检测也不会正常执行。)

有关参数改变步骤,请参考第7.3.6节。

表方法操作

在表方法操作中,特殊数据寄存器 D9000 指定了开始(第一个)表的入口编号。当给出了开始输入后,从储存在 D9000 中的表入口处开始,命令将依次执行。

• 当一个外部开始端子或者 M9001 (开始命令) 开启时,定位单元检查开始表 (D9000) 的内容,并且从指定的表号开始依次执行表程序。

依次执行从开始入口到入口No.99的命令。如果当前指令是END(命令码2口口),则操作在那里结束,如果没有END指令,则操作在入口No.99结束。

下列特殊辅助继电器和数据寄存器与表方法操作的开始和结束有关。

表 7.7: 与开始和结束相关的特殊辅助继电器和数据寄存器

专用 M/D		缓冲存储器 (BFM)	
开始	M9001	#20 b1 或外部开始输入	
结束	M9002	#20 b2 或外部停止输入	
开始入口编号	D9000	#0或#9000	
活动的开始入口编号	D9001	#1或#9001	
正在执行的入口编号	D9002	#2或#9002	

8. 操作、维护和检验

8.1 开始运行前

开始运行前检查以下各项。

8.1.1 系统设计

对定位装置的以下项目作检查,以确认所选择的电动机是适用的。 负载扭矩、负载惯性、加速与减速时间、运行速度、停机精度、运行频率等。

8.1.2 初期检验(电源关闭)

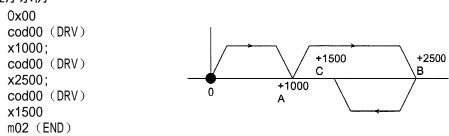
电源接线端子的连接错误、直流输入线与交流电源线相接触、输出接线间短路等均会造成定位装置的严重损坏。

在接通电源之前,确认电源线及接地线的连接均正确,输入/输出线的接线均正确。 按照下列步骤测量定位装置的耐电压和绝缘电阻:

- 1) 断开定位装置的全部输入/输出接线和电源接线;
- 2) 定位装置在不与其它任何装置相连的情况下,用一根跳线连接除接地端子以外的所有端子。
- 3)测量跳线与接地端子之间的电压和电阻。 耐电压: 500V AC, 1分钟(FX2N-10GM, FX2N-20GM) 绝缘电阻: 用 500V DC 程序检测, ≥ 5M Ω
- 8.1.3 程序检验 (开启电源并将定位装置设定在 MANU 模式)

用外围单元编写一个程序(去掉 FX2N-20GM 中 EEPROM 的写保护开关)。 然后,读该程序并检查看其编写是否正确,用外围单元的程序检验功能检查程序和参数。

● 仔细阅读本手册,充分确认安全性,然后执行返回到 MANU/AUTO 模式的零点、点动操作、步进操作或自动运行。操作错误会损坏定位装置或引发事故。


8.1.4 增量 / 绝对驱动法

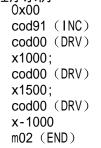
为定出定位装置的位移量(或旋转角),可选用绝对驱动或增量驱动法,绝对驱动法指示从基准点起的位置,而增量驱动法指示从当前位置起的移动距离。

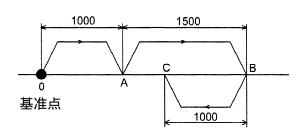
绝对驱动法

定出从基准点(零点)起的距离。

程序示例

在上述示例中,点 A位于距零点 "+1000" 处。


点 B 位于距零点 "+2500" 处。当定位装置从 B 点返回到 C 点时,其运动方向为负,但位移量示值为 "+1500"。


这里给出的是一个程序示例。

增量驱动法

定出从当前位置起的移动距离

程序示例

在上述示例中,显示出与在绝对驱动法中阐述相当的运行状况。此时,点 A 位于距初始位置 "+1000" 处。点 B 位于距 A 点(基准点)"+1500"(增量位移)处。同样道理,点 C 位于距 B 点(基准点)"-1000" 处。

驱动方法规范

在定位程序中输入 "cod90 (ABS) ",即可选用绝对驱动法;输入 "cod91 (INC) "即可选用增量驱动法。如果不作任何指定,即自动选择绝对驱动法 (参见5.6.15节)。

8.1.5 电动机旋转方向

本节内容介绍如何正确设置电动机的驱动。

电动机的旋转方向

电动机的旋转方向是通过连接定位单元和驱动单元的方法和设定参数12和参数15来决定。

表 8.1: 电动机旋转方向

参数 12	旋转方向设定"0"	旋转方向设定"1"		
当前值	用正向旋转脉冲(FP)增大 用反向旋转脉冲(RP)减小	用正向旋转脉冲(FP)增大 用反向旋转脉冲(RP)减小		
指令运行	+x 和+y 指令产生正向旋转脉冲 (FP) -x 和-y 指令产生反向旋转脉冲 (RP)	+x 和+y 指令产生反向旋转脉冲 (FP) -x 和-y 指令产生正向旋转脉冲 (RP)		
FWD 输入 JOG+输入	产生正向旋转脉冲(FP)	产生反向旋转脉冲 (RP)		
RVS 输入 JOG-输入	产生反向旋转脉冲(RP)	产生正向旋转脉冲(FP)		
返零方向	当参数 15 设定为"0"时,即产生正向旋转脉冲(FP)。 当参数 15 设定为"1"时,即产生反向旋转脉冲(RP)。	当参数 15 设定为"0"时,即产生 反向旋转脉冲(RP)。 当参数 15 设定为"1"时,即产生 正向旋转脉冲(FP)。		

电动机旋转方向和定位装置的移动方向取决于正向旋转脉冲,而正向旋转脉冲取决于 连接到驱动单元的方法和定位装置的规范。

8.1.6 限位开关连接

如果限位开关连接不正确,电动机的运行会出问题。

表 8.2: 限位开关的连接

型号	对步进电动机	对伺服电动机
LS 连接	连接到定位单元 驱动单元始终接通	连接到驱动单元 定位单元置始终接通(参见后述注释)
LSF	当 LSF 关闭(参见后述注释)时, 正向旋转脉冲(FP)的输入停止, 用 RVS 操作输入时,可能发生回避。	当 LSF 关闭时,驱动单元中的正向脉冲停止,可接收反向脉冲。
LSR	当 LSF 关闭(参见后述注释)时, 反向旋转脉冲(RP)的输入停止, 用 FWD 运行输入时,可能发生回避。	当 LSR 关闭时,驱动单元中的反向脉冲停止,可接收正向脉冲。

注: 当参数 20 设定为 "0" 时,如果 LS 开启,则脉冲输入停止。 当参数 20 设定为 "1" 时,如果 LS 关闭,则脉冲输入停止。

● 将 LSF 和 LSR 装在通常操作箱稍外一点的地方。

注:

如果要驱动伺服电动机,除非将LSF和LSR连接到驱动单元上,而且定位单元始终设定在 ON (参数 20:1) 或始终设定在 OFF (参数 20:0) 上,否则操作不可能进行。

但是,在这种连接状态下,即使启动 LSF 或 LSR 并且驱动单元自动停止,定位单元也探测不到驱动装置的停机。

因此,最好安装预限位开关 LSF'和 LSR',它们在 LSF和 LSR 之前触发,被连接到定位装置上。

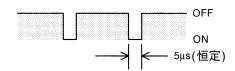
为了避免这种双重应用,可按与步进电动机连接相同的办法,将LSF和LSR连接到定位单元上并且将驱动单元始终设定在 "ON" 上。

8.1.7 各信号检出时间

为了正确编写程序,编写人员必须知道定位单元根据各种输入检测和执行各项操作的时间。

表 8.3 各信号检出时间

输入信号	MANU(手动)模式		AUTO(自动)模式	
柳八百与	电动机停止	电动机工作	电动机停止	电动机工作
SVRDY	驱动前	始终被监控	驱动前	始终被监控
SVEND	驱动后	_	驱动后	_
PG0	_	近点 DOG 触发后	_	近点 DOG 触发后
DOG	在回零驱动之前	在回零操作的过 程中	在回零驱动之前	在回零操作的过 程中
启动	_	_	READY(准备)状 态期间	_
停止		始终袖	坡监控	
手动	始终被监控			
ZRN	始终被监控	_	END 步后待机期 间	_
FWD,RVS (JOG+,JOG-)	始终被监控		END 步后待机期间	
LSF, LSR	驱动前	始终被监控	驱动前	始终被监控
X00-X07	当手动脉冲发生器运行时		当手动脉冲发生 器运行时,END 步后待机期间	执行 INT, SINT 期间, DINT 指令
通用输入 X00 或更大	_		当相应指令被执行时	
用参数规定输 入	<u>-</u>		始终被监控	


在 AUTO (自动)模式时,始终对特殊辅助继电器进行监控 (参见第6.2节)。

8.1.8 脉冲输出波形

输出到驱动单元的波形有如下几种类型。

你不必使用参数去设定输出波形,输出脉冲波形会根据实际频率自动改变。

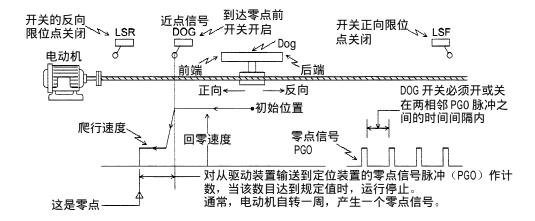
1) 在插补驱动指令(FX2N-20GM)的情况下当发出一个同步 2 轴驱动指令 (Cod 1/02/03/31) 时,给出工作频率为 1HZ~100KHZ 的下图所示的波形。

2) 其它驱动指令的情况

- 当 FX2N-10GM 的工作频率为 200KHZ ~1HZ 时, 开 / 关比为 50%/50%。
- 当 FX2N-20GM 的工作频率为 200KHZ ~101KHZ 时, " 开 " 时间周期固定为 2.5 μ s,所以," 开 " 时间周期变成为与 200KHZ 频率时的 " 关 " 时间周期相当。
- 当 FX2N-20GM 的工作频率为 100KHZ ~1HZ 时, 开 / 关比为 50%/50%。

8.2 各种操作

为了安全地使用定位单元,您应该知道可供使用的控制。 本节内容描述定位单元可实现的各种操作。


8.2.1 回零

定位单元含有一当前值寄存器,它用于记录绝对位置。它根据自己产生的正向旋转和 反向旋转脉冲而增大和减小。这就是说,定位单元的位置是随时可知的。首次启动 时,必须将定位单元的当前位置写入寄存器。

因为关闭电源时当前值寄存器被清除,所以定位装置开启电源后必须执行回零操作。 注意: 如果使用 MR-H、MR-J2或 MR-J2- 超级伺服电动机,则不需进行如上操作。 因为这样的电动机拥有电源关闭后脉冲计数和保持当前值的功能,这意味着只需进行一次回零操作。(参见 4.3.2 节)。

定位单元的回零操作按如下步骤进行:

- 1)给出定位单元回零命令。
- 2) 定位单元按由参数13指定的回零速度和参数15指定的回零方向作零位返回移动。
- 3) 当开启近点信号(DOG)时,定位单元降速至由参数14指定的爬行速度。
- 4) 当零点信号计数达到由参数 17 指定的数目时 (近点信号开启后),定位装置停机, 定位装置的回零操作完成。

操作命令方法

可使用下述的定位装置回零方法:

● 从 - - 外围单元输入 ZRN 信号。

(ZRN 信号输入到 FX2N-20GM 的每一 X 和 Y 轴上)

手动模式: 始终有效

自动模式: 当 mO2 (END) 待机时有效。

● 在执行 Cod28 (DKVZ) 期间(参见第5.4 节中有关 FX2N-20GM 的内容)

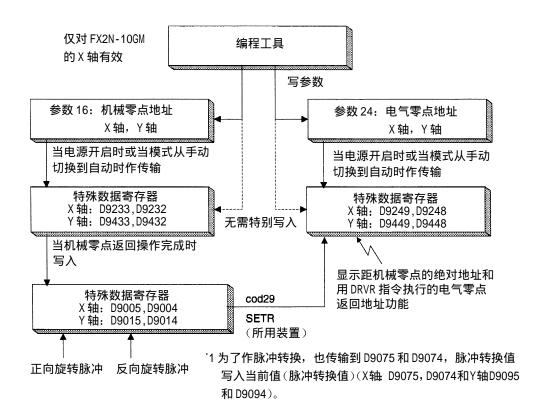
手动模式: 无效

自动模式: 在执行指令期间。

● 由子任务送出的命令

当子任务处在自动模式中时,开启 M9004(X轴)和 M9020(Y轴)。

手动模式: 无效


● 由可编程控制器送出的命令

开启缓冲存储器 #20b4 (X轴) 和 #21 (Y轴)。

手动模式: 始终有效

自动模式: 当 m02 (结束) 待机时有效。

下图显示当定位装置作回零操作时各参数与特殊数据寄存器之间的关系:

特殊辅助继电器 M9057(X轴)和 M9089(Y轴)操作完成机械回零。

另外,如果执行机械回零命令,则所有特殊辅助继电器断开,待回零操作完成时重新接通。

当用手动模式完成机械回零后,模式从手动切换到自动时,继电器 M9057 和 M9089 仍保持激活状态。

DOG 开关的使用

根据 DOG(宽度从前端至后端)和 DOG 开关的设计不同,机械回零操作可采用如下 4 种方法进行。

- 1) 不用安装 DOG 开关的方法(操作示例 1)。 手动操作可进行前向移动和后向移动。当系统停止时,用按钮命令可将当前位置 设置为机械零点。
- 2) DOG 宽度必须尽可能小时用的方法(操作示例 2) 为了使 DOG 开关操作点的调整变得容易,回零速度必须设置得尽可能的慢。 如果在 DOG 通过 DOG 开关后的位置上给出回零命令,定位装置首先移动直至触发 反向位开关,然后向前移动直至定位装置通过 DOG 开关,然后重新沿反方向移动 返回零点位。
 - 这被称为 DOG 搜索功能。
- 3) 当可能设定的 DOG 宽度比电动机减速至爬行速度的距离更大时所使用的方法 (操作示例 3)。
 - 当 DOG 的前端到达 DOG 开关处时减速开始,而当 DOG 的后端到达 DOG 开关处时,开始零点信号计数。由于在达到爬行速度后开始零点信号计数,所以这种方法更便于 DOG 开关激活点的调整。DOG 搜索功能按上述 2 中同样的方法进行。
- 4) 当 DOG 开关距反向限位开关远并且 DOG 搜索操作距离太长时使用的方法(操作示例 4)。

如果 DOG 宽度增大,以使 DOG 开关在回零操作完成后仍保持接通,可以此为基础 执行另一项回零操作。

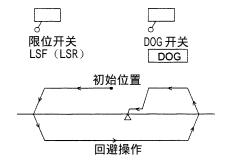
操作示例1

不用安装 DOG 开关的方法:

- 将参数 18 设定在 "2 (无 DOG 模式)",将定位装置作手动零位返回。
- 使用 FWD 和 RVS 按钮使定位装置运动到指定位置。当定位装置停止时,按下 ZRN 按钮。
- 然后,发出 CRL 信号,伺服放大器的偏差量计数器被清零。
- 将设定到参数 16 中的零点地址写入当前值寄存器。
- 当使用 MR-H/MR-J2-Super 伺服电动机且选用绝对驱动法时,该项操作只需进行一次。

操作示例2

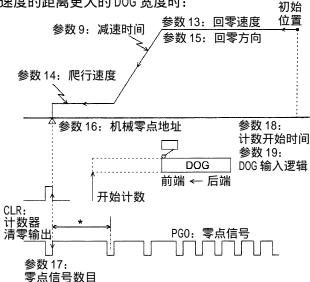
当 DOG 宽度必须尽可能小时所采用的方法。


- 如果用手动模式接通 ZRN 输入或者 用自动模式执行 DRVZ 指令,将会执 行一次定位装置回零操作。
- 回零速度,回零方向、减速时间、爬 行速度等均用参数设定。
- 当DOG的前端到达DOG开关处时开始 减速,而当DOG的前端或后端到达 DOG开关处时开始零点信号计数(参数18的设定决定开始计时)。
- 当PGO计数值达到规定值时(设定在参数17中),移动停止,发出清零信号(CLR),零点地址(设定在参数16中)写入当前值寄存器。

初始 参数 13: 回零速度 位置 参数9: 减速时间 参数 15: 回零方向 设置到参数17的零 点信号数目必须满 参数 14: 爬行速度 足减速距离所需的 脉冲数。 参数 16: 机械零 点地址 □DOG 开关 参数 18: DOG 后端 计数开始 前端 时间 CLR: 参数 19: 输出清零 DOG 输入 参数 17: 逻辑 零点信号数目 PGO: 零点信号 ŌΝ 计数开始

* 调整以确保DOG开关激活点处于两个连续PGO 脉冲之间的时间内。为便于调整,必须取尽 可能慢的回零速度。

DOG 搜索功能

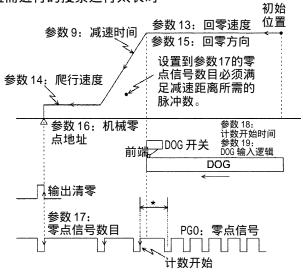

- 当 DOG 已经通过 DOG 开关并停下时,如果执行回零操作,定位装置首先移动直至触发限位开关,随后反向重新进行回零运行。
- 所用的限位开关和 DOG 开关可以 是常开型的,也可以是常闭型的 (可用参数来设定类型)。
- 如果限位开关LSR和LSF未与定位 装置相连接,必须用手动执行回 避操作。

示例3

当可能设定比电动机减速至爬行速度的距离更大的 DOG 宽度时:

- 如果用手动模式接通 ZRN 输入或用自动模式执行 PR V Z 指令时,应进行一次机械回零操作。
- 回零速度、回零方向、减速 时间、爬行速度等均用参数 设定。
- 当 DOG 的前端到达 DOG 开关 处时设定参数使减速开始, 而当 DOG 的后端到达 DOG 开 CLR: 计数器 关处时开始零点信号计数。 清零輸
- 当 P G O 计数值达到规定值 (设定在参数 17 中)时,移 动停止,发出清零输出 (CLR),同时将零点地址(设 定在参数 16 中)写入当前值 寄存器。

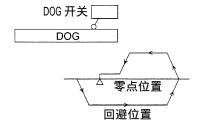
* 调整以确保 DOG 开关激活点位于两个连续的 PGO 脉冲 之间的时间内。DOG 宽度必须比定位装置减速距离宽。


DOG 搜索功能

DOG 搜索用限位开关按前页所述相同的方法进行。

操作示例4

当 DOG 开关距反向限位开关较远且需进行的搜索运行太长时


- 如果用手动模式接通 ZRN 输入或用自动模式执行 DR V Z 指令,应执行机械回零。
- 回零速度、回零方向、减速 时间、爬行速度等均用参数 设定。
- 当 DOG 的前端到达 DOG 开关 处时,设定参数以开始减速 和零点信号计数。
- 当PGO计数值达到规定值时,移动停止,发出清零输出(CLR),将零点地址(设定在参数16中)写入当前值寄存器。

调整以确保 DOG 开关激活点处于两个连续的 PGO 脉冲之间的时间内。为便于调整,必须取尽可能慢的零点返回速度。

DOG 搜索功能

- 如果即使在零位返回操作完成后,DOG仍与 DOG开关保持接触,系统将在执行回零操作 前自动回避这种情况的发生。
- 当限位开关与伺服放大器相连接而不是与 定位装置相连接时,也可以进行自动回避。

8.2.2 点动 (JOG) 操作

本节描述手动正向 / 反向操作。

待接线一完成,即可进行点动操作。建议接线完成后首先用手动模式进行点动操作以检验接线状况。

操作概述

当 FWD(手动正向)或 RVS(手动反向)输入信号接通时,产生一个与最小命令单位相对应的正向或反向脉冲。如果按住按钮的时间超过 0.1s,将持续产生脉冲。

操作方法

可用如下方法进行正向 / 反向操作:

● 从外部单元输入 FWD/RVS 信号。

(FWD/RVS 输入信号分别输入 FX2N-20GM 的 X 轴和 Y 轴)。

手动模式: 始终有效

自动模式: 在 m02 (END) 待机期间有效。

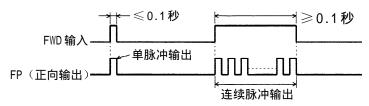
● 由子任务发出命令(当子任务在自动模式中时),(* 只对 FX2N-10GM 的 X 轴有效)。

接通 M9005 (X 轴, FWD) 和 M9021 (Y 轴, FWD) 或 M9006 (X 轴, RVS) 和 M9022 (Y 轴, RVS)。

手动模式: 始终有效。

自动模式:在m02(END)待机期间有效。

● 由可编程控制器发出命令(* 在FX2N-10GM中只对X轴有效)。接通#20b5(X轴, FWD)和#21b5(Y轴, FWD)或#20b6(X轴, FWD)和#21b6(Y轴, FWD)。


手动模式: 始终有效

自动模式:在m02(END)待机期间有效。

操作示例

由编程工具发出的外部输入和命令经由定位装置的OR处理变为有效。

● 定位单元根据输入的命令执行如下操作。RVS 输入也产生 Rp(反向输入)。

- 参数5可设置脉冲输出速度(点动速度)。
- 所产生的脉冲加到当前值寄存器中或从当前值寄存器中减去,X轴的存入 D9005 和 D9004, Y轴的存入 D9015 和 D9014 中。
- 当点动操作时,在脉冲输出完成后,不接通定位完成信号(M9049: X轴,M9081: Y轴)。检查 READY/BUSY信号(M9048: X轴, M9080: Y轴),以确认操作完成(当装置处于准备状态时,M9048和 M9080接通)。

8.2.3 示教

什么是示教功能?

使用该功能,你可以用手动操作(JOG+和JOG-)从示教面板 E-20TP 上将当前值作为目标值(地址值)设置到程序中。

示教功能在定位单元处于手动模式或自动模式且特殊辅助继电器M9161处于接通状态下时有效。

(关于示教操作, 详见 E-20TP 操作手册的 P5~14)。

● 特殊辅助继电器 M9161。

为了在自动模式下执行示教,应该使特殊辅助继电器 M9161 接通。 M9161 接通后,你即可以从 E-20TP 执行示教功能,此时定位单元处于自动模式。 你可以用示教面板上的强行开 / 关功能或下述的程序接通 M9161。

程序示例

OX 10, NO: 规定 X 轴, Y 轴 (0, OX, Oy) 或子任务程序 (0100)。

SET M9161: 在 AUTO 模式下启动示教功能。

用 SET 指令一接通 M9161,示教功能即在自动模式下处于有效状态,直至电源关闭。

8.2.4 单步操作

本节介绍单步操作。

操作概述

每当单步操作命令接通时,输入启动信号,就会执行一行定位程序。

操作方法

为了执行单步操作,参数 53 必须设定为 "1 (单操作有效) ",执行单步操作可采用以下步骤。

● 接通由参数 54 (单步模式输入号)设定的输入。

手动模式:无效 自动模式:始终有效

- 从子任务发出命令(此时子任务处于自动模式),(只对FX2N-10GM的X轴有效)。 接通 M9000(X轴)和 M9001(Y轴)。
- 从可编程控制器发出命令。

接通# 20b0 (X轴), # 21b0 (Y轴) 和# 27b0 (子任务)。

手动模式:无效 自动模式:始终有效

操作示例

根据输入的命令执行如下操作。

程序举例

0X00

N0000 cod28 (DRVZ);

N0100 cod01 (DRV) x1000 m10;

N0200 m02 (END);

- 当接通单步命令输入时,每当接通启动 命令时即执行一行程序。在定位完成前 不接受下一个启动命令输入。
- 在 N0000 行,在机械回零完成前,不接 受下一个命令。
- 在定位完成且接通从可编程控制器发出 的 m 代码 OFF 信号前,包含 m 代码的程 序不接受下一个命令输入。。

8.2.5 自动操作

本节介绍自动操作。

操作概述

定位程序(以及子任务程序)在自动模式下执行。

操作指令输入

下述操作命令是用于执行定位程序的。(每一个这类命令可在自动模式下被接受)。

- START ON (启动)命令由外部单元输入。
- 由子任务发出命令(此时子任务处于自动模式)。接通 M9001(X轴)和 M9017 (Y轴)。
- 从可编程控制器发出命令。接通# 20b1 (X 轴)和# 21b1 (Y 轴)。
- * 通过设置参数 104 (子任务启动)确定子任务启动时间。

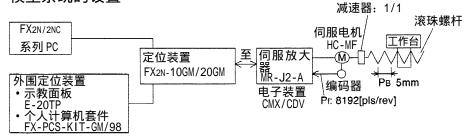
操作示例

根据命令输入执行如下操作。

- 输入启动命令
- 根据参数 30 的设置(程序号规定法)读程序 参数30的设置
 - 0:程序号0(固定)
 - 1: 外部数字开关(0~9)的第1个数字
 - 2: 外部数字开关(00~99)的第2个数字
 - 3: 特殊数据寄存器规格

X轴: D9000 Y轴: D9010

执行指定程序


• 执行用上述参数设定的程序。

备忘录

9. 程序示例

本部分介绍用模型系统设定参数和程序的示例。

9.1 模型系统的设置

f0 命令脉冲频率 {Hz}

CMX : 电子齿轮(命令脉冲放大率分子)

伺服放大器参数 No.3

CDV : 电子齿轮 (命令脉冲放大率分母)

伺服放大器参数 No.4

Pf 反馈脉冲(定位反馈脉冲)数目[pls/rev]

PB 滚珠螺杆的螺距

9.2 参数设置

按如下步骤设定参数

- 1) 从最大运行速度中取得命令脉冲频率,如果需要,更改伺服放大器上的电子齿轮。
- 2) 确定单位体系 (参数 .0)。
- 3) 确定脉冲率(参数1)和进给率(参数.2)。 但是,如果您选用参数.0的装置系统,即不必设定脉冲率和进给率。
- 4) 确定其余参数。

9.2.1 命令脉冲频率和最大运行速度

取得为了使伺服电机 HC-MF 按额定转速(3000 r/min)旋转所需的命令脉冲频率。由于伺服电动机的特性,在某一特定的转速下,命令脉冲频率(f0)与反馈脉冲频率相等,可得出如下等式:

$$f_0 \times \frac{CMX}{CDV} = P_f \times \frac{N_0}{60} \tag{1}$$

NO: 伺服电机的转速[r/min]

假设电子齿轮比率为1:1(是伺服放大器某一参数的初始值),并从等式(1)中得到 "f0"

$$f_0 = P_f \times \frac{N_0}{60} = 8.192[pls/rev] \times \frac{3000[r/min]}{60}$$

=409,600[Hz]

但是,因为定位单元的最高频率是 200KHz,所以应更改电子齿轮。

从等式(1)中可得到 (电子齿轮)

$$\begin{split} \frac{CMX}{CDV} &= P_f \times \frac{N0}{60} \times \frac{1}{f_0} = 8,192 [pls/rev] \times \frac{3000 [r/\min]}{60} \times \frac{1}{200 \times 10^3 [Hz]} \\ &= \frac{256}{125} \end{split}$$

因此,在伺服放大器中设定参数3 (CMX) 和参数4 (CDV) 为 "CMX = 256,CDV = 125"。 * 在 FX_N — 20GM 中,插补操作期间的最高频率为100KHz。

9.2.2 单位体系

有机械体系、电机体系和综合体系三种类型的单位体系,它们具有如下特性: 机械体系[0]

当选择该体系时,必须设定与运动量和速度相关的参数的单位,同时设定运动量的单位和以机械量(mm/min,cm/min)表达的运行速度的单位。另外,还须设定脉冲率和进给率。

电机体系[1]

当选择该体系时,必须设定与运动量和速度相关的参数的单位,同时设定运动量和以脉冲量(pls,Hz)表达的运行速度的单位。不必设定脉冲率和进给率。

综合体系[2]

当选择该体系时,必须设定与运动量相关的参数单位和以机械量(mm)表达的运动量的单位,以及与速度相关的参数单位和以脉冲量(Hz)表达的运行速度的单位。 另外,还须设定脉冲率和进给率。

在本节给出的程序示例中,采用了单位的综合体系 {2}, 在使用单位的综合体系和机械体系时,按后面所述设定脉冲率和进给率。

9 2 3 脉冲率和讲给率

按如下步骤得出脉冲率和进给率。

1) 脉冲率指的是伺服电机旋转一周所需的脉冲量,它可以用下式算出②

脉冲率(参数 No.1)
$$\mathbf{A} = P_f \times \frac{1}{\underline{CMX}}$$
②

用在 9.2.1 节中得到的值(CMX = 256,CDV = 125)代入式(2)中,即得到脉冲率。

脉冲率(参数 No . 1)A= 8192[
$$pls/rev$$
]× $\frac{1}{256}$

$$= 4000[pls/rev]$$

2) 进给率指的是伺服电机轴每转一周工件的运动量。在第9.1 节所示的系统中,可用下式算出进给率。

进给率(参数 No . 2)B
$$= \{ \text{减速机传动比} \} \times \mathsf{P_B} \{ \text{滚珠螺杆螺距} \} \times \frac{1}{\text{旋转周数}} \cdots \cdots \cdots \odot 3$$

如下所示为实际计算

进给率(参数 No.2)B=
$$\frac{1}{1} \times 5[mm] \times \frac{1}{1[rev]}$$

=5[mm/rev]
=5000[μ m/rev]

将运动量换算成脉冲量

1) 运动量

机械量

脉冲量= 电动机每转对应的运动量(进给率) ×

电动机旋转一周所需的脉冲量 (脉冲率)

在第9.1节所示的系统配置中,机械量"200mm"可以如下所示换算成脉冲量

脉冲量(pls)=
$$\frac{200[mm]}{5000[mm/rev]} \times 4000[pls/rev]$$

=160000 [pls]

2) 速度

脉冲量 = $\frac{\text{机械} \pm \times 10^4 \times 1/60}{\text{电动机每转对应的运动量(进给率)}} \times$

申动机旋转一周所需的脉冲量 (脉冲率)

在第9.1节所示的系统配置中,机械量"30cm/min"可以如下所示换算成脉冲量。

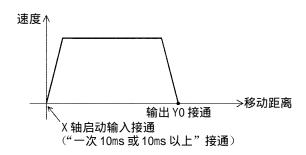
脉冲量 {Hz} =
$$\frac{30[cm/\min] \times 10^4 \times 1/60}{5000[mm/rev]} \times 4000[pls/rev]$$
=
$$\frac{300 \times 1/60}{5} \times 4000$$
=
$$4000 \text{ [Hz]}$$

注意事项

- 当采用单位的机械体系时,应确保参数 No.4 (最大速度值换算成脉冲量)未超 过 "200KHz"。如果超过 "200KHz", 自动设定对应于 "200KHz" 的运行速度。
- 如果 FX₂₀ 20GM 的运行速度设定为"100KHz"或更高,插补操作期间的运行速 度自动设定为与 100KHz 相对应的值。

9.2.4 参数的设定

表 9.1 定位参数


参数号	项目	设定值	注解
No.0	单位体系	2	参见第 4.3.1 节 {装置的混合系统}
No.1	脉冲量	4,000	参见第 4.3.1 节(1){pls/rev}
No.2	进给率	5,000	参见第 4.3.1 节(2){pls/rev}
No.3	最小命令单位	1	用"1/10mm"为单位规定运动量和机械零点 地址
No.4	最大速度	200,000	初始值{Hz}
No.5	点动速度	20,000	初始值{Hz}
No.6	偏移速度	0	初始值{Hz}
No.7	偏差校正	0	初始值 {um}
No.8	加速时间	200	初始值 {ms}
No.9	减速时间	200	初始值 {ms}
No.10	插补时间常数	100	初始值 {ms}
No.11	脉冲输出类型	0	初始值 (正向旋转脉冲+反向旋转脉冲)
No.12	旋转方向	0	初始值 {由正向旋转脉冲增加的当前值}
No.13	回零速度	100,000	初始值 {Hz}
No.14	爬行速度	1,000	初始值 {Hz}
No.15	回零方向	1	初始值 {当前值减少的方向}
No.16	机械零点地址		设定机械零点地址 {1/10mm}
No.17	零点信号计数 次数	1	初始值 (次数)
No.18	零点信号计数 开始点	1	初始值(近点 DOG 的反向端)
No.19	DOG 输入逻辑	0	初始值(常开接触器)
No.20	LS 逻辑	0	初始值(常开接触器)
No.21	错误判定时间	5,000	脉冲输出后,执行伺服结束检查,如果 SVEND (伺服结束)在 5000MS 内不接通即认为出 错。如果 SVEND 信号接通,即执行下一步的 指令。
No.22	伺服准备检查	0	是否检查了伺服准备
No.23	停止模式	1	初始值 (剩余距离驱动有效)
No.24	电气零点地址	0	初始值 (X1/10mm)
No.25	软件限位(大)	0	· 软件限位无效
No.26	软件限位(小)		

虽然初始值为"0",仍根据每个程序设定该参数。

将 I/0 控制参数和系统参数分别设定为初始值。 但是,在 $FX_{2N} - 10$ GM 中,将系统参数 No . 100(存储器大小)设定为 "1(4K 步)"。

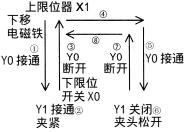
9.3 独立2轴位置控制操作(独立操作)

- 9.3.1 常量进给(FX2N-10GM, FX2N-20GM)
 - 1) 定位概述 定位装置仅以当前运动量移动
 - 2) 操作步骤
 - (1) 当定位装置从外部接收到启动命令时,按当前量进行移动。
 - (2) 移动完成后,接通输出Y0。
 - 3) 运行图

4) 程序

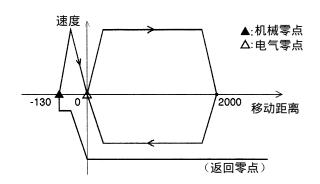
行号	指令	说明
0X0.N0	RST YO;	关闭输出 Y0。
N1	cod91 (INC);	规定增量地址。
N2	cod92 (SET) x0;	设定当前值为"0"。
N3	cod00 (DRV) x900;	将定位装置移动至目标地址"x900"。
N4	SET YO:	接通输出 Y0。

5) 参数


将定位参数 No.16 (机械零点地址)设为"0",其余参数参见第9.2.4节。

9.3.2 用往复运动常量定位(FX2N-10GM, FX2N-20GM)

1) 定位概述 定位装置将工件从左工作台移到右工作台 用一个电磁铁向上和向下移动工件


2) 操作步骤

- ① 定位装置仅在第一次靠启动命令返回零点。
- ② 下移工件的电磁铁 Y0 接通。当下限位开关 X0 接通时,夹紧电磁铁 Y1 接通、夹住工件。
- ③ 在过了等待夹紧时间(1.5 秒)后,下移电磁铁 Y0 断开,定位装置向上移动。

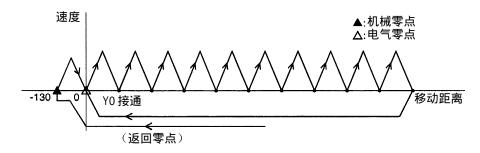
- ④ 当上限位开关 X1 接通时, 定位装置移向右工作台。
- ⑤ 当定位装置移动到达右工作台时,下移电磁铁 Y0 接通。 当下限位开关 X0 接通时,夹紧电磁铁 Y1 断开,夹头松开放下工件。
- ⑥ 在过了等待夹头松开时间(1.5 秒)后,下移电磁铁 Y0 断开,定位装置向上移动。
- ⑦ 当上限位开关 X1 接通时,定位装置返回到左工作台。

3) 运行图

4)程序

```
行号
         指令
                                 说明
N<sub>1</sub>
      FNC00(CJ) P0;
                      如果回零完成标志 M9057 接通,即跳转至 P0
                      将定位装置返回零点
N2
      cod28(DRVZ);
                      (机械零点地址=-130)
                      将定位装置移至地址"0"
N3
      cod00(DRV) x0;
                      设定电气零点
N4
      cod29(SETR);
 N<sub>5</sub>
    P0;
       SET YO:
N<sub>6</sub>
                      接通下移电磁铁
     → P1;
 N7
                      确认定位装置已经下移
      LD X0:
 N8
                      (重复动作直至 X0 接通)
      FNC01(CJN) P1;
 N9
 N<sub>10</sub>
      SET Y1;
                      使定位装置的夹头夹住工件
      cod04(TIM) K150;
 N11
                      夹紧等待时间设定为"1.5秒"
 N12
      RST Y0;
                      断开下移电磁铁,上移定位装置
 N13 \rightarrow P2:
                      确认定位装置已经上移
 N14
      LD X1;
                      (重复动作直至 X1 接通)
 N15
      FNC01(CJN) P2:
      cod00(DRV) x2000;
 N16
                      将定位装置移动到地址"2000"
 N17
       SET Y0;
                      接通下移电磁铁
 N18 \rightarrow P3;
      LD X0:
 N19
                      确认定位装置已经下移
 N20
      FNC01(CJN) P3;
                      (因为这几行与上述 N7 - N9 行相同,
 N21
       RST Y1;
                      可编入一子程序中)
 N22
       cod04(TIM) K150;
                      使定位装置松开夹紧工件的夹头
       RST Y0;
 N23
                      设定夹头松开等待时间为"1.5秒"
                      断开下移电磁铁,上移定位装置
 N24 → P4;
 N25
      LD X1;
                      确认定位装置已经上移
 N26 L
      FNC01(CJN) P4;
                      (因为这几行与上述 N13 — N15 行相当,
 N27
       cod30(DRVR);
                      可编入一子程序中)
 N28
      m02 (END);
                      使定位装置返回电气零点
```

5) 参数


设定定位参数No.16(机械零点地址)为"一130"。对其余参数,参见第9.2.4节。

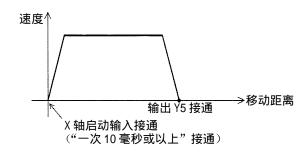
9.3.3 重复操作(FX2N-10GM, FX2N-20GM)


1) 定位概述

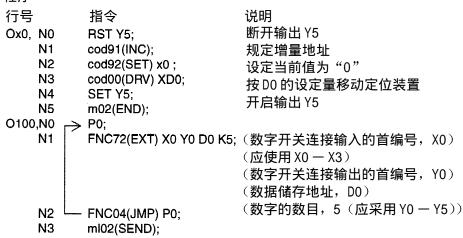
通过多次进行重复常量定位,定位装置完成定位操作。

- 2) 操作步骤
 - ① 定位装置只在第一次用启动命令返回零点。
 - ② 定位装置重复十次常量进给,然后返回电气零点。
- 3) 运行图

4) 程序


5) 参数

将定位参数 No.16 (机械零点地址) 设定为 "-130",对其余参数的设定参见第 9.2.4 节。


- 9.3.4 运动量为变值的定位操作(FX2N-10GM, FX2N-20GM)
 - 1) 定位概述

将一数字开关连接到定位装置上,用该数字开关设定定位装置移动的运动量。

- 2) 操作步骤
 - ① 用数字开关设定进给量(增量值)。(连接示例参见所附连接图)。
 - ② 定位装置接受外部启动指令,按在(1)中设定的运动量移动。
 - ③ 当移动完成时,输出 Y5 接通。
- 3) 运行图

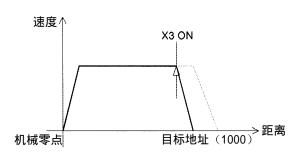
4) 程序

为了读取数字开关,应该用参数 33 设定数字转换时间(初始值= 20ms)。 当 FX_{2N} - 10GM/20GM 主机身上连接有数字开关时,该转换时间固定在"7ms"。结果缩短了运行时间。

5) 参数

设定定位参数 No.16(机械零点地址)为"0",对于其余参数,参见第9.2.4节。

9.3.5 中断停止(FX2N-10GM, FX2N-20GM)


1) 定位概述

当中断输入 X3(FX2N-20GM 中的 X6)接通时,定位装置减速并停止。然后进行到下一步,而不管此时还剩下多少距离。

2) 操作步骤

- ¬ 定位器只有第一次时用启动命令返回零点。在那以后,定位器移动至目标位置。
- 在操作期间,当中断输入 X3 接通时,定位器减速并停止,然后进行到下一步,而不管此时还剩多少距离。
- ® 当输出 YO 接通和断开时,定位器返回到地址"0"。

3)运行图

4)程序(FX2N-10GM)

行号		指令	说明
Ox0,	N0 *	LD M9057;	如果回零完成标记 M9057 接通,跳转至
	N1	FNC00(CJ) P126;	P126。
	N2	cod28(DRVZ);	使定位器返回零点(机械零点地址 =0)
	N3 👇	P126;	
	N4	cod31(INT) x1000 f1200;	设定目标地址为"1000"。
	N5	SET Y0;	接通 Y0
	N6	cod04(TMR) K150;	设定运行等待时间为"1.5秒"。
	N7	RST Y0;	断开 Y0
	N8	cod04(TMR) K150;	设定断开等待时间为 "1.5秒"。
	N9	cod00(DRV) x0 f1200;	
	N10	m02(END);	使定位器返回零点。

^{*}用 FX2N-20GM 时,将该部分改为 "Oo, No"。

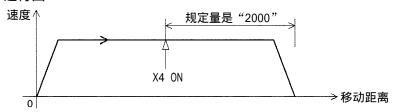
5) 参数

将定位参数 No.16 (机械零点地址)设为"0",对其余参数,参见第9.2.4节。

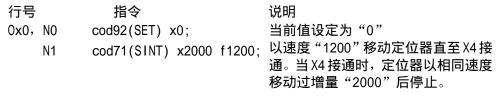
注意事项:

如果在 FX2N-20GM 中执行此程序,因为实际上采用了同步 2 轴操作指令,不能对 Y 轴 (它在该程序中不作控制)加以控制。

9.3.6 单步速度时的中断停止(FX2N-10GM, FX2N-20GM)


1) 定位概述

如果定位器工作在速度模式,当中断信号由外部输入时,就选择了定位模式,定位器在移动规定距离后停止。


2) 操作步骤

¬ 定位器用启动命令起动,当从外部接通中断信号 X4 (用 FX2N-10GM 时为 X2) (对于 X 轴)时,定位器从该点起移动规定的增量距离后停止。

3) 运行图

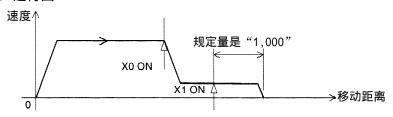
4)程序

N2 m02(END);

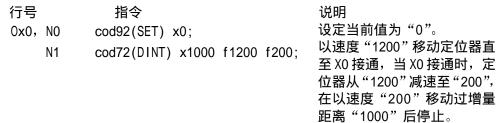
5)参数

设定定位参数 No.16(机械零点地址)为"0"。对其余参数,参见第9.2.4节。

9.3.7 2 步速度时的中断停止(FX2N-10GM, FX2N-20GM)


1) 定位概述

如果定位器工作在速度模式,当外部输入第一步的中断信号时,运行速度减小, 定位器在移动过规定距离后停止。当输入第二步的中断信号时,就选择了定位 模式,定位器在移动过规定距离后停止。


2) 操作步骤

¬ 定位器用启动命令起动。当从外部接通第一步中断信号 X0 (对于 X 轴)时,运行速度减小,当接通第二步中断信号 X1 (对于 X 轴)时,定位器从该点起移动过规定增量距离后停止。

3)运行图

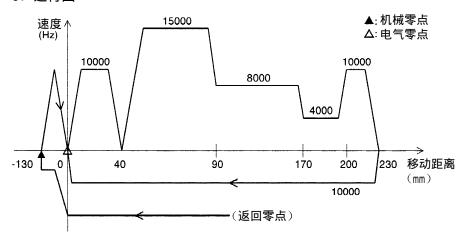
4)程序

N2 m02(END);

5)参数

设定定位参数 No.16(机械零点地址)为"0",对其余参数,参见第9.2.4节。

9.3.8 多步速度时的操作(独立操作)


1) 定位概述

在给工件定位时,定位器的运行速度可变化。

2) 操作步骤

- ¬ 定位器只在第1次用启动命令返回零点。
- 定位器停在地址 "40mm"处,停在地址 "230mm"处,然后移动至 "0mm" 地址处。
- ® 从地址 "40mm"移动至 "230mm"处时,定位器根据在 "90mm", "170mm"和 "200mm"位置处的设定改变速度。

3)运行图

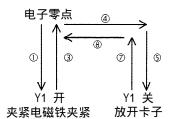
4)程序		
行号	指令	说明
0x0, N0 *	FNC02(CALL) P127;	调出回零子程序
N1	cod00(DRV) x400 f10000;	
N2	cod01(LIN) x900 f15000;	规定连续路径并采用多步速度 下的操作
N3	cod01(LIN) x1700 f8000;	
N4	cod01(LIN) x2000 f4000;	
N5	cod01(LIN) x2300 f10000;	
N6	cod09(CHK) ;	用伺服结束检查确认定位的完 成,然后进入下一步。
N7	cod00(DRV) x0 f10000;	
N8	mO2(END);	
N9	P127;	回零子程序。
N10	LD M9057;	
N11	FNC00(CJ) P126;	如果回零完成标记 M9057 接通 跳转至 P126。
N12	cod28(DRVZ);	使定位器返回零点。 (机械零点地址=-130)
N13	cod00(DRV) x0;	使定位器移动至地址"0"
N14	cod29(SETR);	设定电气零点
N15	P126;	
N16	FNC03(RET);	子程序返回。 (规定子程序结束)

5)参数

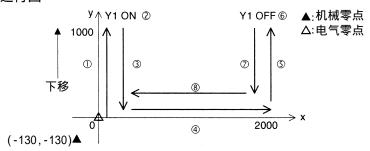
设定定位参数 No.16 (机械零点地址) 为"-130", 对其余参数,参见第9.2.4节。

在 FX_{2N} -20GM 中执行多步速度操作时,设定"00,N0",然后使用上述程序。 但是,在实际操作中,定位器执行连续路径操作时,其速度改变点与上述有所不同,采用了组合速度。

9.4 同步 2 轴位置控制操作(FX2N-10GM)


9.4.1 用往复运动常量定位(FX2N-20GM)

1) 定位概述


定位器将工件从左工作台移动到右工作台。 假设 X 轴是左右方向,而 Y 轴是上下方向。

2) 操作步骤

- ¬ 只有在第一次用启动命令使定位器返回零点。
- 定位器向下移动。当夹紧电磁铁 Y1 接通时, 定位器夹紧工件。
- ® 定位器向下移,移动到右工作台。
- 定位器下移动。当夹紧电磁铁 Y1 断电时, 定位器放开工件。
- · 定位器上移,返回左工作台。

3) 运行图

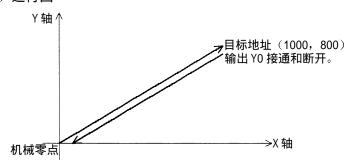
4)程序

行号 指令 说明 O0, N0 LD M9057; 如果回零完成标记 M9057 接通, 即跳转至 PO。 N1 FNC00(CJ) P0; 使定位器返回零点。 (机械零点地址 =-130(X), -130(Y))。 N₂ cod28(DRVZ); 移动定位器至地址"0,0"。 N3 cod00(DRV) x0 y0; N4 → P0: N5 cod00(DRV) y1000; 下移定位器 N₆ SET Y1; 使定位器夹紧工件。 N7 cod04(TIM) K150; 设定夹紧等待时间为"1.5秒"。 **N8** cod00(DRV) y0; 上移定位器。 N9 cod00(DRV) x2000; 将定位器右移 cod00(DRV) y1000; N₁₀ 下移定位器 N11 RST Y1; 使定位器放开(=释放)工件 N12 cod04(TIM) K150; 设定夹头松开等待时间为"1.5秒" N13 cod00(DRV) y0; 上移定位器 N14 cod00(DRV) x0; 将定位器左移 N15 m02(END);

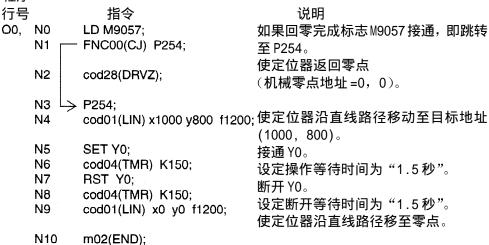
5)参数

将 X 和 Y 轴的定位参数 No.16(机械零点地址)均设定为"-130",其余参数参见第 9.2.4 节。

9.4.2 直线插补 (FX2N-20GM)


1) 定位概述

定位器沿一直线路径移动至目标地址,一直等待到辅助单元完成其工作,然后返回零点。


2) 操作步骤

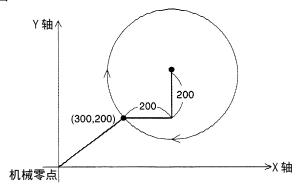
- ¬ 只有在第一次用启动命令使定位器返回零点。
- 定位器沿直线路径移动至目标地址。
- ® 输出 Y0 接通和断开。
- ⁻ 定位器返回零点(0,0)

3)运行图

4)程序

5)参数

将 X 轴和 Y 轴的定位参数 No.16 (机械零点地址)均设定为 "0",对其余参数,参见第 9.2.4 节。


9.4.3 圆弧插补 (真圆)(FX2N-20GM)

1) 定位概述 定位器沿一真圆路径移动。

2) 操作步骤

- ¬ 只有在第一次用启动命令使定位器返回零点。
- 定位器沿直线路径移动至目标地址。
- ® 输出 Y0 接通, 定位器沿一真圆周路径移动。
- ⁻ 输出 Y0 断开,定位器返回零点地址(0,0)。

3)运行图

4)程序

行号 说明 指令 O0. N0 LD M9057: 如果回零完成标志 M9057 接通,即跳转至 N₁ FNC00(CJ) P254; P254。 使定位器返回零点。(机械零点地址=0,0) cod28(DRVZ); N2 → P254; N3 cod01(LIN) x300 y200 f1200;移动定位器至目标地址(300, 200)。 N4 开启 YO。 SET Y0: N5 设定操作等待时间为"1.5秒"。 N6 cod04(TMR) K150; 因为未规定终点坐标(目标位置),要设 N7 cod02(CW) i200 j200 f1200; 定一真圆路径。 圆心座标(i, j)始终被当作一增量地址来 处理。 如果指定了半径(r),不能实现一真圆路 径。 **N8** RST Y0: 断开 YO。 cod04(TMR) K150; N9 设定断开等待时间为"1.5秒"。 N10 cod01(LIN) x0 y0 f1200; 沿一直线路径将定位器移动至零点。

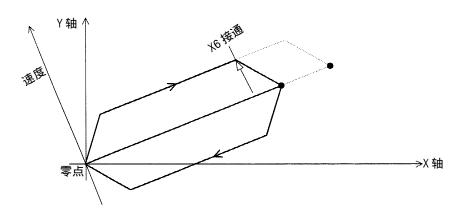
5) 参数

N11

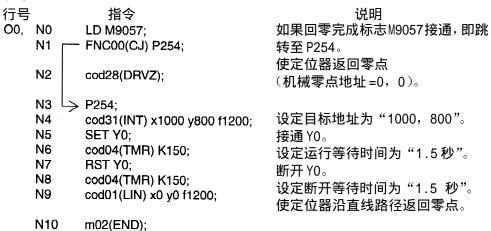
m02(END);

将 X 轴和 Y 轴的定位参数 No.16(机械零点地址)均设定为"0",对其余参数,参见第 9.2.4 节。

9.4.4 中断停止(FX2N-20GM)


1) 定位概述

当定位器正执行朝向目标位置的直线插补操作时,如果中断输入 X6 接通,则定位器减速并停止,然后进入下一步而不管尚剩余多少距离。


2) 操作步骤

- ¬只有在第一次用启动命令使定位器返回零点。定位器执行朝向目标位置的直线插补操作。
- 在直线插补操作期间,当中断输入 X6 接通时,定位器减速并停止。然后,不管尚剩下多少距离,即进入下一步。
- ® 在输出 Y0 接通和关闭后,定位器返回到地址"0"。

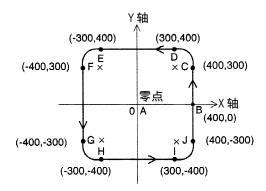
3)运行图

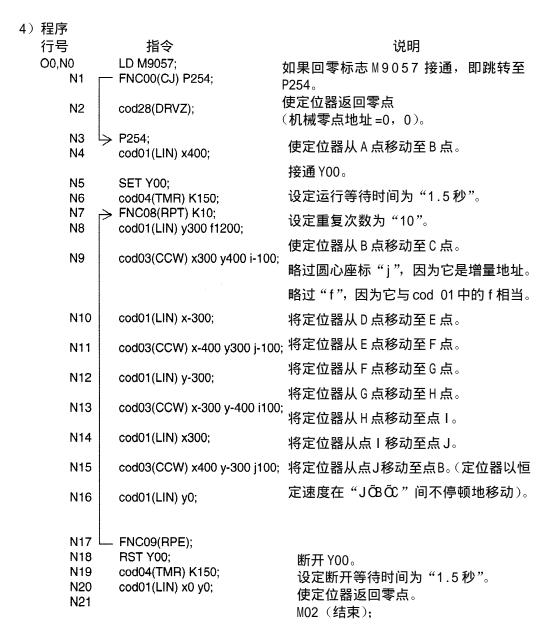
4)程序

5)参数

将 X 轴和 Y 轴的定位参数 No.16 (机械零点地址)均设定为"0"。对其它参数,参见第 9.2.4 节。

9.4.5 连续路径操作(FX2N-20GM)


1) 定位概述


定位器以恒定速度重复进行不停顿的轨迹操作。

2) 操作步骤

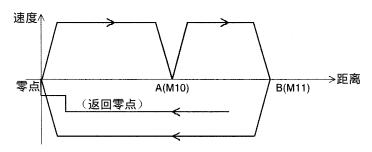
- ¬只有在第一次时用启动命令使定位器返回零点。
- 定位器沿直线路径移动至目标地址。
- ® 接通输出Y0,定位器重复进行10次轨迹操作。
- ⁻ 断开输出 Y0,定位器返回零点。

3)运行图

5)参数

设定定位参数 No.16(机械零点地址)为"0",对于其余参数,参见第9.2.4节。

- 9.5 与 PLC (FX₂N-64MT) 的组合
- 9.5.1 定量定位(FX_{2N}-10GM, FX_{2N}-20GM)


1) 定位概述

当定位完成后,定位单元将 m 代码信号传送至 FX_{2N} 系列 PLC,PLC 进行与 m 代码相对应的辅助单元操作。

2) 操作步骤

- ¬ 输入启动命令(X000)后,定位器只在第一次返回零位,并将该位置当作电气零位。
- 当定位器停在第1点(A)时,定位单元将m1o代码传送至PLC。接收到m1o代码后,PLC使辅助单元N0.1(y010)运行。当辅助单元No.1的运行完成后,PLC断开y010,并将m代码断开命令传送至定位单元。
- ® 接收到 m 代码断开命令后,定位单元断开 m 代码,定位器移动到第 2 点(B)。 当定位器到达 B 点时,定位单元将 m11 代码传送至 PLC。在接收到 m11 代码 后,PLC 使辅助单元 No.2(y010)运行。当辅助单元 No.2 的运行结束后,PLC 断开 y010 并将 m 代码断开命令传送至定位单元。
- 接收到 m 代码断开命令后,定位单元断开 m 代码,定位器移动至电器零点。至此,运行结束。

3)运行图

4)程序

行号	指令	说明	
Ox0, N0	LD M9057;		
N1	FNC00(CJ) P0;	如果回零完成标志 M9057 开启, 使定位器返回零点。	即跳转至 P0。
N2	cod28(DRVZ);		
N3	cod29(SETR);	设定电气零点。	
N4	P0;		
N5	cod00(DRV) x5000;	使定位器移动至 A 点。	
N6	m10;	输出 m 代码 10。	
N7	cod00(DRV) x9000;	使定位器移动至 B 点。	
N8	m11;	输出 m 代码 11。	
N9	cod30(DRVR);	使定位器移动至电气零点。	
NIAO	00/END\-	使是世俗的别土电(令点。	

N10

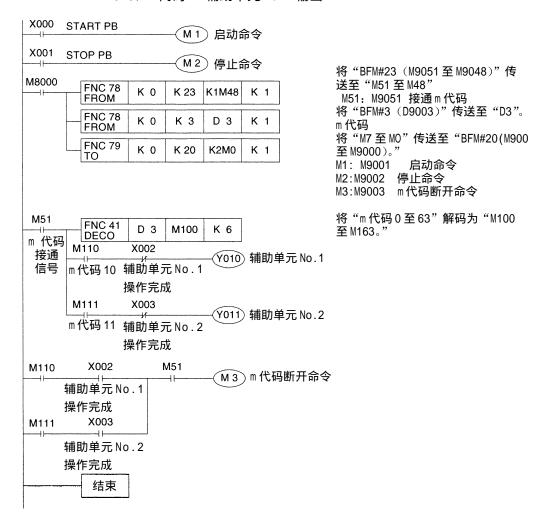
m02(END);

5)参数

设定定位参数 No.16(机械零点地址)为"0",对其余参数,参见第9.2.4节。

6) PLC (FX2N-64GM) 中的程序

外部信号 X000: 启动按钮


X001: 停止按钮

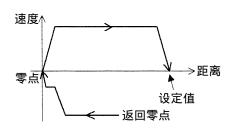
X002: 辅助单元 NO.1 操作完成输入

X003: 辅助单元 NO.2 操作完成输入

Y010: m代码 10 辅助单元 No.1 输出

Y010: m代码 11 辅助单元 No.2 输出

9.5.2 运动量为变值的定位(FX2N-10GM, FX2N-20GM)

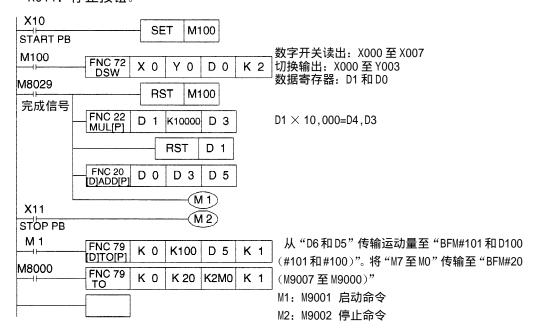

1) 定位概述

FX2N 系列 PLC 上连接一数字开关,PLC 通过数字开关将随机定位地址输入传送到定位单元,然后,定位单元执行定位操作。

2) 操作步骤

- ¬通过数字开关设定定位随机地址(绝对值)。
- 当输入启动信号(X010)时,定位装置只在第1次时返回至零点,然后移动至规定位置。

3)运行图



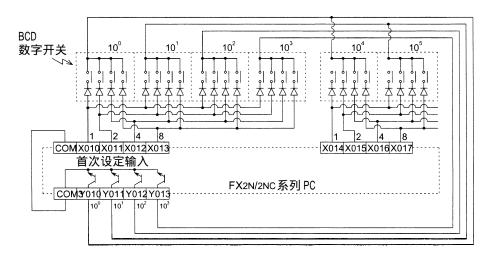
4)程序 说明 行号 指令 如果回零完成标志 M9057 接通, 即跳转至 P0。 Ox0, N0 LD M9057: N1 FNC00(CJ) P0; 使定位器返回零点。 N2 cod28(DRVZ); N3 P0; cod00(DRV) xDD100; 使定位器移动至由 D101 和 D100 规定的位置。 N4 D101和D100与缓冲存储器#101和#100相对应。 N5 m02(END); 数据用 TO 指令从 PLC 传输。

5)参数

设定定位参数 No.16(机械零点地址)为"0"。对其余参数,参见第9.2.4节。

- 6) FX_{2N} 系列 PLC 中的程序 外部信号
- X000 至 X007 和 Y000 至 Y003 上连接一个 6 位数字开关。(连接的示例参见所附的连接图)。
- X010: 启动按钮。
- X011: 停止按钮。

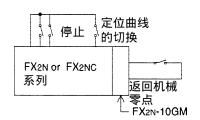
附件 1: 数字开关连接到 FX2N-10GM/20GM 上时的情况


有几种可用于装配到2极管上的市售数字开关。

SDG4101DX (FUJISOKU)

31J52M (JAE)

A7AS-207 (OMRON)


附件 2: FX2N/2NC 系列 PLC 上连接数字开关,以及 FX2N/2NC 系列 PLC 向 FX2N-10GM/20GM 发出运动量等指令时的情况。

9.5.3 用表方法定位

下面所示是用表方法定位的示例程序

系统配置

 起动
 : X000

 停止
 : X001

 定位模式的切换
 : X007

返回至机械零点: 使用 FX2N-10GM (ZRN) 端子。

连接FX2NC可编程控制器时需要FX2NC-CNV-1F

操作的内容

可以执行下图所示的定位控制曲线1或2

当曲线切换输入 X007 断开时, 执行曲线 1。

当曲线切换输入 X007 接通时, 执行曲线 2。

在执行表程序前,应该用手动操作(外部 ZRN 端子输入:接通)回到机械零点。

曲线图 1: 用增量驱动法操作

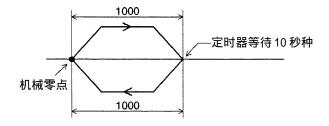


表 9.2: 表

项	目号	命令代码	定位数据	速度数据	m代码
0	数据寄存器	D1001, D1000	D1003, D1002	D1005, D1004	D1007, D1006
	设定值	K91 (INC)	KO (未定义)	KO (未定义)	KO(无需设定)
1	数据寄存器	D1011, D1010	D1013, D1012	D1015, D1014	D1017, D1016
	设定值	KO (DRV)	K1000	K2000	KO(无需设定)
			地址+1000	速度: 2000	
2	数据寄存器	D1021, D1020	D1023, D1022	D1025, D1024	D1027, D1026
	设定值	K4 (TIM)	K1000	KO(未定义)	K110
			等候时间: 10[s]		m代码 10 为同步
					输出
3	数据寄存器	D1031, D1030	D1033, D1032	D1035, D1034	D1037, D1036
	设定值	KO (DRV)	K-1000	K2000	KO(无需设定)
			地址-1000	速度: 2000	
4	数据寄存器	D1041, D1040	D1043, D1042	D1045, D1044	D1047, D1046
	设定值	K204 (TIM)	K500	KO(未定义)	KO(无需设定)
		等候时间过后,	等候时间: 5[s]		
		操作进入 END 状			
		态			

曲线图 2: 用绝对驱动方法操作

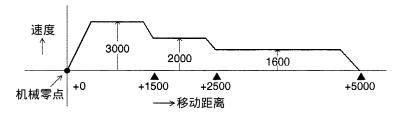
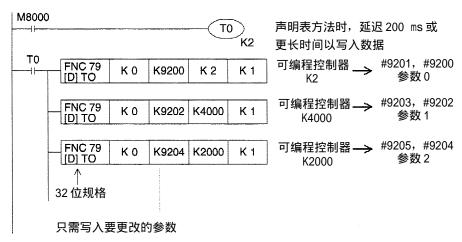


表 9.3: 表

入口	1号	命令代码	位置数据	速度数据	M 代码
10	数据寄存器	D1101, D1100	D1103, D1102	D1105, D1104	D1107, D1106
	设定值	K90 (ABS)	KO (未定)	KO (未定)	KO(不需设定)
11	数据寄存器	D1111, D1110	D1113, D1012	D1115, D1114	D1117, D1116
	设定值	K1 (LIN)	K1500	K3000	KO(不需设定)
			地址+1500	速度: 3000	
12	数据寄存器	D1121, D1120	D1123, D1122	D1125, D1124	D1127, D1126
	设定值	K1 (LIN)	K2500	K2000	KO(不需设定)
			地址+2500	速度: 2000	
13	数据寄存器	D1131, D1130	D1133, D1132	D1135, D1134	D1137, D1136
	设定值	多步操作结	K5000	K1600	KO(不需设定)
		束后运行即	地址+5000	速度: 1600	
		进入 END 状态			


表方法的声名

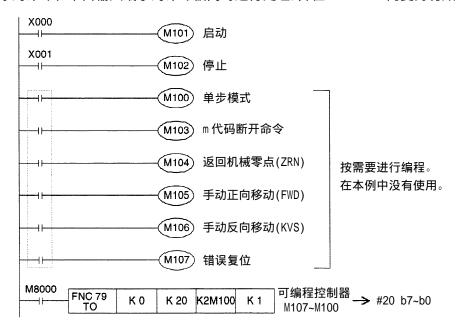
接通专用辅助继电器 M9165,这样,使用表方法的定位控制变为有效。

M8002 FN	IC 79	К0	K 30	H0020	K 1
l L	10				

参数的改变

如果需要,可更改定位参数(Nos. 0到26)的设定值。接通电源时,初始值(如第4.2节所示)储存进每个参数中。]但是,当您用定位单元专用的外围设备更改参数时,储存的是更改后的值。使用TO指令只写入必须更改的参数。

指定起点



设定操作模式

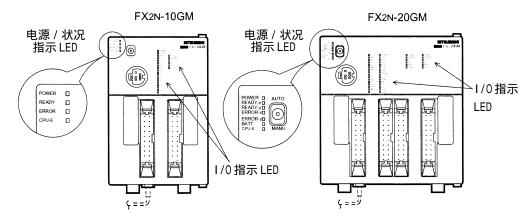
设定用于启动 / 停止,返回机械零点(ZRN),手动正向移动(FWD)和手动反向移动(KVS)的命令。

也可以从 FX_{2N}-10GM 的输入端子发出这些命令。

来自程序的命令和来自输入端子的命令被同时进行处理,并在FX2N-10GM内变为有效。

设定表式入口

初始化表时,可能激活监视计时器(WDT),并且 CPU 可能产生错误。遇到这样的情况,在寄存器 D8000(监视计时器)中设定一个大的值,并在程序中插入 FNC07(WDT)指令,以使 WDT 在 100 ms 内刷新。


备忘录

10. 故障诊断

当初次出现故障时,检查电源供电电压是否正常,定位单元或 I /0 单元的端子螺丝是否松动、接头接触是否不良。

10.1 根据 LED 的显示作故障诊断

可通过检查定位单元上各种 LED(发光二极管)的显示状态来查找故障情况。 LED 的名称

电源指示

- "电源"LED显示
- 当电源开启时,如果电源 LED 不亮,断开各种 I / 0 装置的连接。如果 I / 0 连接断开后电源 LED 正常发亮,则,1)24V 直流电源超负荷(对于 FX2N-20GM)。
- 对于 FX2N-20GM,如果有导电物落入或发生其它错误,单元内的保险丝可能爆断。 遇到这种情况,仅更换保险丝是不够的,请与三菱公司的服务中心联系。

准备状态

- "准备" LED 断开
- 当定位单元已准备好接收各种操作命令(参见8.1.7节)时,不论是手动或自动模式,"准备"LED均会亮起。
 - 1) 当正在执行定位操作时(正在输出脉冲)。 Õ输入停止命令或从自动模式切换成手动模式使操作停止,则该 LED 亮起。

故障指示

- "故障" LED 亮起
- 在操作期间如果发生故障,"故障"LED 会亮起或闪烁。遇到此种情况时,可用外 围设备读故障代码,参考"10.2.3 故障表"找出故障原因并排除它。常见的故障 如下。
 - 1)参数出错

故障代码 2004 (最大速度)

Õ如果所采用的单位系统是机械系统,当转换为脉冲时设置可为 200KHZ 或更高。

2)程序出错

故障代码: 3000 (无程序号)

Õ如果执行一个不存在程序号的程序,即出现该故障,监控参数 30(程序号指定)、D9261/D9260(X 轴)和 D9461/9460(Y 轴)以确保指定的程序号是正确的。

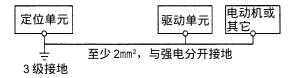
3)程序出错

故障代码 3001 (无 m02 (结束) 命令)

Õ在指定需执行的程序结尾没有"m02"(子任务中的M102)。

4) 外部出错

故障代码: 4004 (限位开关激活)


Õ检查参数 20 (限位开关逻辑)

CPU 故障

"CPU-E" LED 亮起

• 如果用手动模式开启定位单元的电源时 CPU-E LED 亮起,说明监视计时器已发生 故障。遇到这种情况,检查电池电压是否为低,是否存在异常干扰源,或有外来 导体杂物存在。

我们建议使用 2mm² 或更大截面积的导体进行越短越好的 3 级接地(接地电阻,100 欧或更小),如第 3 章所述。

电池电压故障

"电池电压" LED 亮起 (FX2N-20GM)。

● 如果电池电压低,则开启电源时电池电压 LED 靠 5V 电源供电;特殊辅助继电器 M9143被激活。在检测到电池电偏低后大约一个月后,电池电压 LED 亮起,程序(当 使用 RAM 存储器时)和各种靠电池支持的存储器备份在发生断电时就不能被保存。必须立即更换电池。

说明

● 特殊继电器 M9127 被驱动时,即使电池电压低,该 LED 也不会亮起。 专用辅助继电器 M9143 仍处于激活状态。

- 特殊数据寄存器设定数值时,数据寄存器的内容可能变得不稳定,并且当电池电压变低时设定值会变化;即使使用 EEPROM 作为程序存储器亦如此。请加注意。
- FX2N-10GM 是无电池型的产品,并且装有 EEPROM 存储器。

1/0指示

各种 I/0 指示用 LED。

● 如果输入开关接通和断开时 I/O指示 LED 不闪烁,可检查定位单元的输入接线。特别应检查输入开关的连接是否可靠,输入开关是否因其与另一线路并接等原因而不能关闭。如果输出指示 LED 闪烁而负载不能接通或断开,应检查输出接线。特别是,定位单元的输出晶体管可能因负载短路或超载而损坏。

脉冲输出指示

● 脉冲输出指示 LED(FP 和 RP)在正常工作状态(当脉冲输出时)下看起来发光暗淡,这是因为这些 LED 实际上在以高频闪烁。

10.2 故障代码表

当发生下表所列的故障时,在定位单元前面板上的 ERROR-X 或 ERROR-Y LED 会亮起。 注意,当发生下表所列的外部故障时,LED会闪烁,还应注意,在发生故障代码为9002 的故障时,CPU-E LED 会亮起。

10.2.1 故障确认

可以用 E-20TP 示教面板或 FX-PCS-KIT/GM 个人电脑软件或通过使用下表所列的特殊辅助继电器(M)和特殊数据寄存器(D)对故障进行监控来确认故障代码。

如果连接有 FX2N/FX2NC 系列可编程控制器,可以用 FR0M 指令读缓冲存储器(BFM)从可编程控制器中来检查故障代码。

12 TO TE HXP年IJIMI (人					
	故障	章检测	故障代码		
	特殊⋈	BFM	特殊 D	BFM	
X轴	M9050	#23 (b3)	D9061	#9061	
Y轴	M9082	#25 (b2)	D9081	#9081	
子任务	M9129	#28 (b1)	D9102	#9102	
操作	当检测到故障时接通		存储	故障代码	

表 10.1: 故障的确认

10.2.2 故障复位方法

可以通过消除出错起因来使故障复位并执行如下操作:

- 使用 E-20TP、个人电脑软件等外围设备执行出错复位操作(详见相关手册)。
- 将工作模式设为手动并发出停止命令(通过接通输入端子[STOP]或特殊 M)。
- 接通下表所示的特殊 M 或 BFM。

	故障检测		
	特殊 M	BFM	
X 轴	M9007	#20 (b7)	
Y轴 *1	M9023	#21 (b7)	
子任务	M9115	#27 (b3)	

^{*1:}FX2N -10GM 中未定义Y轴。

10.2.3 故障代码表

表 10.3: 故障代码表

表 10.3: A 故障类型	故障代码	具体表现	复位	同步 2 轴模式	独立 2 轴模式
无故障	0000	无故障	_		_
系统参数	1100-111 1	如果 100~111 中的任 一参数设定不正确,即 显示相应的故障代码 1100~1111	确保被认为出错的	全局故障	全局故障
参数设定 出错	2000 至 2056	如果任一 0~24 中的定位参数或 30~56 的 I/0控制参数设定得不确,即显示相应的故障代码 2000~2056	参数设定 是在设定 范围内	局部故障	局部故障
	3000	程序号不存在。 当启动命令是用自动 模式给出时,指定的程 序号不存在。	改 变 程 序 号 或 编 制 程序		
	3001	程序中无"m02(END)"。 在规定程序的结尾处 无 m02(END)命令	在规定程 序的结尾 处添加 " m02 (END)	全局故障	局部故障
	3003	当设定值超过 32 位时,设定值寄存器溢出	等于 32 位 的值		
程序出错	3004	设定值无效。 当输入值不在设定范 围内	将设定值 改为设定 范围内的 值	局部故障	
	3005	命令型式无效。 当不能省略的设定(移 动距离和速度)被省略 或输入了另一个轴的 设定值	确 认 每 条 指 令 后 的 程序型式		局部故障
	3006	缺少 CALL (调用) 和 JUMP (跳转)指令的标 号	给跳转目 的地和调 用的标号 编号	全局故障	
	3007	调用命令无效。 嵌套级超过 15 层。或 者,该调用与 RET 的标 号不相应	调 整 嵌 套 至≤15 层, 尤其是,请 确认层数		

表 10.3: 故障代码表

12 10.0		いかした T	I	I	
故障 类别	故障 代码	具体表现	复位	同步2轴模式	独立2轴模式
	3008	重复指令故障 嵌套层超过 15 或者 RPT 与 RPTEND 的标号不相应	调整嵌套至 ≤15 层,尤 其是,请确认 重复指令		局部故障
程序 出错	3009	0.N.P数有问题。 规定了在设定范围之外的 0.N.P数	确 认 是 否 有 相同的数	全局故障	
	3010	轴的设定有问题 同时存在相对于 2 个独立 轴同步程序的轴	统一程序		全局故障
	4002	伺服结束故障 未从电动机放大器接收到 定位完成信号	检查参数 21 及接线		
外部 故障	4003	伺服准备故障 未从电动机放大器接收到 准备完成信号	检查参数 22 及接线	局部故障	局部故障
(LED 闪烁)	4004	限位开关激活	检查参数 20, 检查限位逻辑,然后检查 接线		
	4006	ABS 数据传输出错	确 认 参 数 50~52 及接线	局部故障	局部故障
	9000	存储器出错	如果关闭电		
	9001	和校验出错	源后再开启		
严重 故障	9002	监视计时器出错 (CPU-E LED 亮起)	而 该 故 障 仍 再次出现,即	全局故障	全局故障
HXI'¥	9003	硬件出错	需要修理,请 与三菱维修 中心联系		

全面性故障:即使仅 X 或 Y 轴发生故障,故障指示仍是对 2 个轴而言的。并且两轴都停止。

局部性故障: 故障指示仅对曾发生过故障的轴而言。在同步 2 轴运行期间,2 轴同时停止。

在独立2轴轴运行时,仅曾经发生过故障的轴停止。

FX系列定位控制器 维护 11

11. 维护

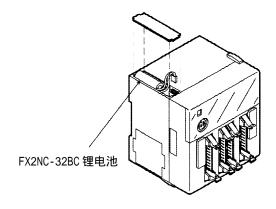
定期维护

定位单元中的大部分零件永远不需要更换。但是,电池的工作寿命大约为5年(质量保证期为1年),并且应该用以下步骤进行定期更换。电池可在需要时购买。

FX2N-10GM 是不带电池的,程序和参数是储存在内置 EEPROM 中的。

在检验其它设备时也对如下项目进行检查。

- 面板内的温度是否因邻近物体的热幅射或太阳的直射而异常高?
- 面板内是否落入了灰尘或导电异物?
- 接头是否松动或生锈,或是否存在接线损坏?

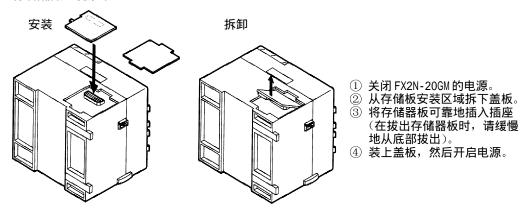

电池的更换

如果电池电压低,则电源开关打开时,前面板上的电池电压 LED 会亮起。虽然在电池电压 LED 首次亮起后储存器数据仍可保持约1个月,但应尽快更换电池,并且应尽量保持电源打开直到电池被更换掉。

注意:即使采用EEPROM 板作为程序存储器,仍需要电池来保护存储在电池支持存储器中的数据。

电池更换步骤:

- 1) 关闭 FX2N-20GM 的电源。
- 2) 用手指或螺丝头揭开面板的上部,并打开盖板。
- 3) 从电池座上取出电池,并拆下接头。
- 4) 立即插入新电池的接头(在拆下旧电池接头30秒内)。
- 5) 将新电池装进电池座内, 并盖上面板


FX系列定位控制器 维护11

存储器板

可采用可选的存储器板(FX2NC-EEPROM-16)来把 FX2N-20GM 的程序写入 ROM 中。程序所占容量为 7.8K 步。

不能采用带时钟功能的存储器板。

存储器板的拆卸

- 电池和存储器板要配用规定的接插件。接触不良可能会引起故障。
- 要从 FX2N-20GM 上拆下安装存储器板时,应先确保电源已关闭。 如果在电源为开启状态下拆除或安装存储器板,会破坏掉储存在存储器中的数据或存储器本身。

12. 附录

12.1 指令表

表 12.1: 指令表

指令	说明	FX2NC-1 OGM	FX2NC-2 OGM	参考页
定位指令				
cod00 DRV	高速定位	√	√	112
cod01 LIN	直线插补定位	√	√	114
cod02 CW	圆弧插补定位(顺时针)	×	√	116
cod03 CCW	圆弧插补定位(逆时针)	×	√	116
cod04 TIM	稳定时间(暂停时间)	√	√	118
cod09 CHK	伺服结束检查	√	√	118
cod28 DRVZ	返回机械零点	√	√	119
cod29 SETR	电气零点设定	√	√	120
cod30 DRVR	返回电气零点	√	√	120
cod31 INT	中断停止(忽略剩余距离)	√	√	121
cod71 SINT	单步速度时的中断停止	√	√	122
cod72 DINT	两步速度时的中断停止	√	√	123
cod73 MOVC	运动量校正	√	√	125
cod74 CNTC	中心位置校正	×	√	125
cod75 RADC	半径校正	X	√	125
cod76 CANC	校正取消	√	√	126
cod90 ABS	绝对地址指定	√	√	127
cod91 INC	增量地址指定	√	√	127
cod92 SET	当前值设定	√	√	127
顺序基本指令				
LD	算术操作开始(a 接触)	√	√	132
LDI	算术操作开始(b 接触)	√	√	132
AND	串行连接(a 接触)	√	√	132
ANI	串行连接(b 接触)	√	√	132
OR	并行连接(a 接触)	√	√	132
ORI	并行连接(b 接触)	√	√	132
ANB	电路板间的串接	√	√	132
ORB	电路板间的并接	√	√	132
SET	操作保持型线圈的驱动	√	√	132
RST	操作保持型线圈的复位	√	√	132
NOP	无动作	√	√	132

FX系列定位控制器

表 12.1: 指令表

指令 指令 [] [[] [] [] [] [] [] [] []	说明	()(')()		参考页
ルップ イエカリイ日 マ		OGM	OGM	
	条件跳转	√	√	135
		√ √	√ √	135
	负条件跳转 - 子和京湖田		√ √	
	子程序调用	√ /		136
	子程序返回	√	√	136
	无条件跳转	√ ,	√	136
	返回至母线	√ ,	√ ,	137
	重复启动	√	√ .	138
	重复结束	√	√	138
FNC10 CMP	比较	√	√	140
FNC11 ZCP	区域比较	√	√	140
FNC12 MOV	传输	√	√	141
FNC13 MMOV	带符号扩展的放大传输	√	√	141
FNC14 RMOV	带符号保持的缩小传输	√	√	142
FNC18 BCD	从二进制转换至二进制编码的十 进制	√	√	143
FNC19 BIN	从二进制编码的十进制转换至二 进制	×	√	143
FNC20 ADD	二进制加法	×	√	144
FNC21 SUB	二进制减法	√	√	144
FNC22 MUL	二进制乘法	√	√	145
FNC23 DIV	二进制除法	√	√	145
FNC24 INC	二进制增量	√	√	146
FNC25 DEC	二进制减量	√	√	146
FNC26 WAND	逻辑乘 (AND)	√	√	146
FNC27 WOR	逻辑和(OR)	√	√	146
FNC28 WXOR	逻辑异和(XOR)	√	√	146
FNC29 NEG	求反	√	√	147
FNC72 EXT	数字开关的分时读	√	√	148
FNC74 SEGL	带锁存的七段显示	√	√	150
FNC90 OUT	输出	√	√	152
FNC92 XAB	X 轴绝对位置检测	√	√	153
FNC93 YAB	Y轴绝对位置检测	×	√	153

附录 12

12.2 参数记录

表 12.2: 定位参数

参数号	说明	X轴设定值	Y轴设定(
0	单位体系		
1	脉冲率		
2	进给率		
3	最小命令单位		
4	最大速度		
5	点动速度		
6	偏移速度		
7	偏差校正		
8	加速时间		
9	减速时间		
10	插补时间常数		
11	脉冲输出格式		
12	旋转方向		
13	回零方向		
14	爬行速度		
15	回零方向		
16	机械零点地址		
17	零点信号计数		
18	零点信号计数开始计时		
19	DOG 开关输入逻辑		
20	限位开关逻辑		
21	故障校验时间		
22	伺服准备检查		
23	停止模式		
24	电气零点地址		
25	软件限位 (上)		
26	软件限位 (下)		

表 12.3: 1/0 控制参数

参数号	说明	X 轴设定值	Y轴设定值
30	程序号指定方法		
31	DSW 分时读的首输入号		
32	DSW 分时读的首输出号		
33	DSW 读间隔		
34	RDY 输出有效		
35	RDY 输出号		
36	m代码外部输出有效		
37	m代码外部输出号		
38	m代码关闭指定输入号		
39	手动脉冲发生器		
40	手动脉冲发生器的每脉冲增殖因子		
41	倍增结果的分裂率		
42	手动脉冲发生器的首输入号使能		
43-49	空		
50	ABS 接口		
51	ABS 的首输入号		
52	ABS 控制的首输出号		
53	单步操作		
54	单步模式输入号		
55	空		
56	FWD/RVS/ZRN 的通用输入声明		

表 12.4: 系统参数

参数号	说明	数值
100	存储器大小	
101	文件寄存器	
102	电池状态	
103	电池状态输出号	
104	子任务启动	
105	子任务启动输入号	
106	子任务停止	
107	子任务停止输入号	
108	子任务出错	
109	子任务出错输出	
110	子任务单步/循环操作	
111	子任务单步/循环操作输入号	
TSUBISHI		12-4

12.3 程序记录

程序号

行号	说明	行号	说明
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N		N	
N SUBISHI		N	12-5

12.4 表信息清单

表 12.5: 表信息清单

输入号	命令代码	位置数据	速度数据	m 代码
0	D1001, D1000	D1003,D1002	D1005,D1004	D1007,D1002
1	D1011,D1010	D1013,D1012	D1015,D1014	D1017,D1012
2	D1021,D1020	D1023,D1022	D1025,D1024	D1027,D1022
3	D1031,D1030	D1033,D1032	D1035,D1034	D1037,D1032
4	D1041,D1040	D1043,D1042	D1045,D1044	D1047,D1042
5	D1051,D1050	D1053,D1052	D1055,D1054	D1057,D1052
6	D1061,D1060	D1063,D1062	D1065,D1064	D1067,D1062
7	D1071,D1070	D1073,D1072	D1075,D1074	D1077,D1072
8	D1081,D1080	D1083,D1082	D1085,D1084	D1087,D1082
9	D1091,D1090	D1093,D1092	D1095,D1094	D1097,D1092
10	D1101,D1100	D1103,D1102	D1105,D1104	D1107,D1102
11	D1111,D1110	D1113,D1112	D1115,D1114	D1117,D1112
12	D1121,D1120	D1123,D1122	D1125,D1124	D1127,D1122
13	D1131,D1130	D1133,D1132	D1135,D1134	D1137,D1132
14	D1141,D1140	D1143,D1142	D1145,D1144	D1147,D1142
15	D1151,D1150	D1153,D1152	D1155,D1154	D1157,D1152
16	D1161,D1160	D1163,D1162	D1165,D1164	D1167,D1162
17	D1171,D1170	D1173,D1172	D1175,D1174	D1177,D1172
18	D1181,D1180	D1183,D1182	D1185,D1184	D1187,D1182
19	D1191,D1190	D1193,D1192	D1195,D1194	D1197,D1192
20	D1201, D1200	D1203,D1202	D1205,D1204	D1207, D1202
21	D1211,D1210	D1213,D1212	D1215,D1214	D1217,D1212
22	D1221,D1220	D1223,D1222	D1225,D1224	D1227,D1222
23	D1231,D1230	D1233,D1232	D1235,D1234	D1237,D1232
24	D1241,D1240	D1243,D1242	D1245,D1244	D1247, D1242
25	D1251,D1250	D1253,D1252	D1255,D1254	D1257,D1252
26	D1261,D1260	D1263,D1262	D1265,D1264	D1267,D1262
27	D1271,D1270	D1273,D1272	D1275,D1274	D1277,D1272
28	D1281,D1280	D1283,D1282	D1285,D1284	D1287,D1282
29	D1291,D1290	D1293,D1292	D1295,D1294	D1297,D1292
30	D1301,D1300	D1303,D1302	D1305,D1304	D1307,D1302
31	D1311,D1310	D1313,D1312	D1315,D1314	D1317,D1312
32	D1321,D1320	D1323,D1322	D1325,D1324	D1327,D1322
33	D1331,D1330	D1333,D1332	D1335,D1334	D1337,D1332
34	D1341,D1340	D1343,D1342	D1345,D1344	D1347,D1342
35	D1351,D1350	D1353,D1352	D1355,D1354	D1357,D1352
36	D1361,D1360	D1363,D1362	D1365,D1364	D1367,D1362
37	D1371,D1370	D1373,D1372	D1375,D1374	D1377,D1372
38	D1381,D1380	D1383,D1382	D1385,D1384	D1387,D1382

表 12.5: 表信息清单

输入号	命令代码	位置数据	速度数据	m代码
39	D1391,D1390	D1393,D1392	D1395,D1394	D1397,D1396
40	D1401,D1400	D1403,D1402	D1405,D1404	D1407,D1406
41	D1411,D1410	D1413,D1412	D1415,D1414	D1417,D1416
42	D1421,D1420	D1423,D1422	D1425,D1424	D1427,D1426
43	D1431,D1430	D1433,D1432	D1435,D1434	D1437,D1436
44	D1441,D1440	D1443,D1442	D1445,D1444	D1447,D1446
45	D1451,D1450	D1453,D1452	D1455,D1454	D1457,D1456
46	D1461,D1460	D1463,D1462	D1465,D1464	D1467,D1466
47	D1471,D1470	D1473,D1472	D1475,D1474	D1477,D1476
48	D1481,D1480	D1483,D1482	D1485,D1484	D1487,D1486
49	D1491,D1490	D1493,D1492	D1495,D1494	D1497,D1496
50	D1501,D1500	D1503,D1502	D1505,D1504	D1507, D1506
51	D1511,D1510	D1513,D1512	D1515,D1514	D1517,D1516
52	D1521,D1520	D1523,D1522	D1525,D1524	D1527, D1526
53	D1531,D1530	D1533,D1532	D1535,D1534	D1537,D1536
54	D1541,D1540	D1543,D1542	D1545,D1544	D1547,D1546
55	D1551, D1550	D1553,D1552	D1555, D1554	D1557, D1556
56	D1561,D1560	D1563,D1562	D1565,D1564	D1567,D1566
57	D1571,D1570	D1573,D1572	D1575,D1574	D1577,D1576
58	D1581,D1580	D1583,D1582	D1585,D1584	D1587,D1586
59	D1591,D1590	D1593,D1592	D1595,D1594	D1597,D1596
60	D1601, D1600	D1603,D1602	D1605,D1604	D1607, D1606
61	D1611,D1610	D1613,D1612	D1615,D1614	D1617,D1616
62	D1621, D1620	D1623,D1622	D1625,D1624	D1627, D1626
63	D1631,D1630	D1633,D1632	D1635,D1634	D1637, D1636
64	D1641,D1640	D1643,D1642	D1645,D1644	D1647,D1646
65	D1651, D1650	D1653,D1652	D1655, D1654	D1657, D1656
66	D1661,D1660	D1663,D1662	D1665,D1664	D1667,D1666
67	D1671,D1670	D1673,D1672	D1675,D1674	D1677, D1676
68	D1681,D1680	D1683,D1682	D1685,D1684	D1687,D1686
69	D1691,D1690	D1693,D1692	D1695,D1694	D1697,D1696
70	D1701,D1700	D1703,D1702	D1705,D1704	D1707,D1706
71	D1711,D1710	D1713,D1712	D1715,D1714	D1717,D1716
72	D1721,D1720	D1723,D1722	D1725,D1724	D1727,D1726
73	D1731,D1730	D1733,D1732	D1735,D1734	D1737,D1736
74	D1741,D1740	D1743,D1742	D1745,D1744	D1747,D1746
75	D1751,D1750	D1753,D1752	D1755,D1754	D1757,D1756
76	D1761,D1760	D1763,D1762	D1765,D1764	D1767,D1766
77	D1771,D1770	D1773,D1772	D1775,D1774	D1777,D1776
78	D1781,D1780	D1783,D1782	D1785,D1784	D1787,D1786
79	D1791,D1790	D1793,D1792	D1795,D1794	D1797,D1796

表 12.5: 表信息清单

输入号	命令代码	位置数据	速度数据	m 代码
80	D1801, D1800	D1803,D1802	D1805,D1804	D1807,D1806
81	D1811,D1810	D1813,D1812	D1815,D1814	D1817,D1816
82	D1821, D1820	D1823,D1822	D1825, D1824	D1827,D1826
83	D1831, D1830	D1833,D1832	D1835,D1834	D1837,D1836
84	D1841,D1840	D1843,D1842	D1845,D1844	D1847,D1846
85	D1851, D1850	D1853,D1852	D1855, D1854	D1857,D1856
86	D1861, D1860	D1863,D1862	D1865,D1864	D1867,D1866
87	D1871,D1870	D1873,D1872	D1875,D1874	D1877,D1876
88	D1881, D1880	D1883,D1882	D1885,D1884	D1887,D1886
89	D1891, D1890	D1893, D1892	D1895, D1894	D1897,D1896
90	D1901, D1900	D1903,D1902	D1905, D1904	D1907,D1906
91	D1911,D1910	D1913,D1912	D1915,D1914	D1917,D1916
92	D1921, D1920	D1923,D1922	D1925,D1924	D1927,D1926
93	D1931,D1930	D1933,D1932	D1935,D1934	D1937,D1936
94	D1941,D1940	D1943,D1942	D1945,D1944	D1947,D1946
95	D1951, D1950	D1953,D1952	D1955,D1954	D1957,D1956
96	D1961,D1960	D1963,D1962	D1965,D1964	D1967,D1966
97	D1971,D1570	D1973,D1972	D1975,D1974	D1977,D1976
98	D1981,D1980	D1983,D1982	D1985,D1984	D1987,D1986
99	D1991,D1990	D1993,D1992	D1995,D1994	D1997,D1996